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A B S T R A C T   

The global pandemic caused by the coronavirus (COVID-19) disease has collapsed the worldwide economy. 
Elements such as non-obligatory vaccination, new strain variants and lack of discipline to follow social distancing 
measures suggest the possibility that COVID-19 may continue to exist, exhibiting the behavior of a seasonal 
disease. As the socio-economic crisis has become unsustainable, all countries are planning strategies to gradually 
restart their economic and social activities. Initially, several containment measures have been adopted involving 
social distancing, infection detection tests, and ventilation systems. Despite the implementation of such policies, 
there exists a lack of evaluation of their performance to reduce the contagion index. This means there are no 
appropriate indicators to decide which intervention or set of interventions present the most effective result. 
Under these conditions, the development of models that provide useful information in the design and evaluation 
of containment measures and re-opening policies is of prime concern. In this paper, a novel approach to model 
the transmission process of COVID-19 in closed environments is proposed. The proposed model can simulate the 
effects that result from the complex interaction among individuals when they follow a particular containment 
measure or re-opening policy. With the proposed model, different hypothetical re-opening policies, that are 
otherwise impossible to analyze in real conditions, can be tested. Computer experiments demonstrate that the 
proposed model provides suitable information and realistic predictions, which are appropriate for designing 
strategies that allow a safe return to economic activities.   

1. Introduction 

Starting in 2020, the World Health Organization [1] declared the 
outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SAR-
S-CoV-2) as a pandemic. The spread of COVID-19 has produced severe 
social and economic consequences. The strain of SARS-CoV-2 has also 
experienced recent mutations such as the delta and omicron variants 
which were first detected with high incidence in India, South Africa, and 
the United Kingdom. These new changes in the strain have increased its 
propagation even in countries with high vaccination rates [2,3]. 

Despite the current vaccination programs against COVID-19, the 
number of cases along with their social and economic effects continue to 
be worrisome [4]. Under the present circumstances, vaccination 

programs present some insufficiencies. Although the period is not clear, 
the effect of the inoculation is limited [5]. Furthermore, in some coun-
tries, vaccination programs are focused only on certain age ranges, and 
therefore a significant segment of the population is not eligible to get the 
vaccine. On the other hand, since vaccination is voluntary, a consider-
able number of people could decline to be immunized [6]. These issues 
suggest the possibility that COVID-19 may continue to exist, exhibiting 
the behavior of seasonal disease [7]. Under such conditions, it seems 
that vaccination programs as a standalone containment measure are not 
enough to slow down the spread of the disease and its adverse effects. 
For that reason, international health organizations and governments 
should be prepared to face this challenge permanently. 

The COVID-19 disease has left the whole world facing devastating 
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economic damages. The restrictive measures and confinement have 
forced the lockdown of companies, restaurants, malls, stores, schools, 
and airlines [8], to mention a few. Additionally, the efforts to control the 
global pandemic and prevent more infections are breaking global supply 
chains [9]. As a consequence, unemployment has been mainly impacting 
vulnerable groups and working-class communities [10]. Therefore, 
strategies to rebuild the economy are now essential. 

The adopted restrictions for containing the spread of COVID-19 have 
presented a negative effect in the global macroeconomic sector. This fact 
has forced the design of new re-opening policies that allow interaction 
among individuals in their workplaces, while at the same time mini-
mizing contagion risk [11]. Such rules represent procedures for acti-
vating the economy, which involve prevention measures and security 
protocols to reduce the contagion risk of COVID-19 [12]. The design of 
non-pharmaceutical interventions is and will continue as an important 
tool for reducing the spread of the disease. Currently, a set of impactful 
measures that limit the propagation of COVID-19 exist. They include air 
filtration, ventilation, social distancing, contact tracing and random 
detection testing. The design of these strategies for the new coexistence 
of people in organizations must be based on information extracted from 
reliable models rather than just common sense. Mathematical modeling 
represents an important tool that can be used to compare alternative 
hypothetical re-opening policies. Valuable time and resources can be 
saved when re-opening policies are pre-evaluated, by providing a basis 
to select for consideration only the options which, according to the 
simulations, deliver the highest benefit. 

In the last months, researchers have been confronted with a signifi-
cant challenge in modeling and forecasting the spread of the COVID-19 
disease [13]. They have focused on developing new models that allow 
the entire community to understand the behavior of the SARS-CoV-2. 
The primary objective of these models is to provide valuable informa-
tion to authorities. 

Some examples of recent models include the one developed by 
Ref. [14], where differential equations are formulated to study the dy-
namics of the virus. The model consists of an autonomous system with 
realistic assumptions about human populations such as time-dependent 
classes of susceptibility, exposure, hospitalization, quarantine, recovery, 
and fatality. The model produces short-term forecasts according to the 
current governmental policies. However, the model only considers the 
security measures imposed so far, namely lockdown and social isolation. 
Moreover, it was only implemented in some states of India. 

On the other hand, [15] analyzed the feasibility of restrictive mea-
sures, such as isolation and contact tracing, for controlling COVID-19 
outbreaks. In the proposed work, the authors developed a stochastic 
transmission model to quantify the time that the disease can be con-
tained under these security measures. Nevertheless, the model has some 
limitations since it does not reflect the changes in the transmission 
process. 

In [16], the authors generated a real-time forecast for contagion and 
risk assessment in specific countries such as the U.K. and France. They 
implemented a hybrid approach based on an autoregressive integrated 
moving average model and a Wavelet-based forecasting model. For the 
risk assessment, they used an optimal regression tree algorithm for fa-
tality rates. The proposed models have some limitations, such as 
simplification by making assumptions and considering few factors for 
fatality rates. 

Later, [17] proposed a mathematical model for the spread of the 
COVID-19. The model takes into consideration undetected infectious 
cases and the sanitary conditions of hospitalized individuals. It also 
evaluates the necessity of beds in hospitals. However, the model is only 
appropriate for environments where local community transmission is 
the leading reason for contagion. Likewise, [18] presented a model for 
controlling the transmission dynamics of COVID-19. They proposed 
different control strategies for early and late diagnosis. In addition, the 
model considers strategies to control the spread of the coronavirus. 

Since the origin of the SARS-CoV-2 was in China, several proposed 

mathematical models emphasize the analysis of the epidemic dynamic in 
that country, namely the compartmental model proposed by Ref. [19], 
which studies the spread of the coronavirus considering the trans-
missibility of super-spreader individuals. Also, [20] developed a model 
to characterize the dynamics of COVID-19 with un-quarantine infected, 
confirmed-infected, and quarantine-infected cases. In addition, [21] 
proposed a mathematical model for evaluating the early transmission 
dynamics of COVID-19. The model was fitted with datasets of cases in 
Wuhan and internationally exported cases from Wuhan to predict the 
coronavirus spread from Wuhan to the rest of the world. 

The transmission of a contagious disease in a population is a complex 
phenomenon. Its behavior is affected mainly by interactions among in-
dividuals, rather than simply the characteristics of each isolated indi-
vidual [22]. Interactions can be observed as social processes [23], such 
as contact among individuals or their mobility requirements, and as 
place effects [24], such as the size of the space where the individuals 
interact or their number. The complexity of the interactions also in-
volves effects through time [25], where results in the past, present, and 
future influence in the decision-making context; for example, in-
dividuals already detected as infected are isolated and no longer 
represent a contagion source. 

Most of the reported schemes use classical modeling approaches to 
explain, interpret and predict the transmission of COVID-19. These 
methods consider in their scheme high concentrations of individuals 
assumed as factors rather than their interactions [26]. Such models are 
appropriate to interpret the global behavior of COVID-19 on larger 
scales considering aggregated variables [27]. They cannot provide ac-
curate predictions when it is important to model the transmission pro-
cess person-to-person [28]. There are several contexts, such as 
re-opening policy design of closed facilities, where it is critical to 
analyze the transmission behavior in a finer resolution. These contexts 
involve small groups of people in facilities where the transmission 
process is provoked by the interactions among their members [29]. 

Facilities that operate in closed environments such as schools, fac-
tories, or offices present higher rates of infection than those that perform 
their activities in open or hybrid environments. Cities around the world 
whose economic sector is mostly represented by closed facilities have 
higher death rates than average [30], even with good performances of 
their vaccination programs [31]. Since closed environments involve 
very different contexts, the type and extension of each intervention 
should be tailored, depending on the risk of infection, individual 
behavior presented in each location, economic field, kind of activity, 
and group of interest [32]. Due to such factors, the study and modeling 
of the spread of COVID-19 in closed environments require particular 
attention. 

SARS-CoV-2 presents an airborne nature [33]. Therefore, there exists 
a high risk of infection when people are exposed to inhale microscopic 
aerosols and respiratory droplets at short distances in closed places. 
Taking action to reduce the transmission process of COVID-19 is a 
difficult task since it implies discipline and self-observance of all mem-
bers of society. Due to the differences among individuals, it is difficult to 
estimate the real results of the interventions [34]. For that reason, 
simulating and modeling the COVID-19 transmission risk from a 
person-to-person perspective is important to predict the epidemiological 
effects produced from the implementation of intervention actions. 

With the aim of reaching their own objectives, organizations inte-
grate the collective work of several individuals. To restrict the number of 
elements (workers, clients, students, etc.) in an organization reduces its 
efficiency and the probability of achieving its objectives. An effective re- 
opening policy, or containment measure, should allow the maximal 
number of elements inside of a facility under the minimal risk of 
contagion. 

Agent-based models [35] correspond to computational schemes used 
to explain the behavior of complex systems. Under these models, the 
actions of elements are emulated inside the system, also considering the 
manner in which these entities influence and are influenced by their 
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social and physical environment [36]. Agent-based modeling involves 
the simulation of individuals making decisions through programmable 
rules [37]. These rules are defined to include the key aspects of the real 
scenario to be modeled, along with the particular characteristics of each 
individual [38]. The rules correspond to the mechanism or process by 
which the emulated elements make their decisions. They involve the 
properties of each individual and the physical and social environment 
[39]. These decisions can affect the properties of the individuals and also 
influence the common environment. Although the system is modeled 
from the individual point of view, its main properties are visualized from 
a global perspective [40]). Agent-based models explicitly involve indi-
vidual interactions representing their effects on the system results. Even 
models with elementary elements and simple interactions can produce 
behaviors that cannot be generated and analyzed from the perspective of 
classical approaches [41]. Different from traditional mathematical 
models that assume homogeneous elements, agent-based models 
consider agents with different properties and deliver more realistic re-
sults [42,43].). The powerful modeling properties of the agent-based 
models have motivated their use in several applications, which 
include the behavior in supply chains [44], the stock market [45], the 
characterization of the immune system [46], the understanding about 
the fall of ancient civilizations [47], and consumer purchasing behavior 
[48], to name a few. 

Agent-based models are particularly appropriate when the behavior 
of the interacting elements presents an important factor in the results. 
Hence, its use has also been extended as an option to traditional math-
ematical approaches to model the behavior of contagious diseases. The 
results of agent-based models allow to obtain a better fidelity than 
classical approaches. This fidelity allows extrapolating from model re-
sults to real-world system behavior. Therefore, conclusions extracted 
from the simulations can be used to understand the transmission process 
and compare policy options. Some agent-based models have been 
introduced in literature to describe the behavior of different illnesses. 
Some examples involve schemes such as [49], where historical data is 
considered to generate interaction patterns for an agent-based model in 
order to describe the behavior of the influenza epidemic. In Ref. [28], 
historical information is integrated to predict the plausibility of future 
disease outbreaks. In Refs. [50,51], two agent-based models are pre-
sented, which include interactions to describe the nationwide trans-
mission of influenza in Switzerland and Australia, respectively. Both 
schemes produce a hypothetical population from census data. Then, 
agents are operated by some rules that consider interactions among big 
groups of people. Although all these agent-based approaches incorpo-
rate interactions in their models, such interactions are established from a 
macro resolution (in big groups of people to describe nationwide 
transmission). For that reason, these models cannot be used in some 
applications, such as re-opening policy design, where the individual 
interaction is necessary to evaluate different hypothetical scenarios. 
More recently, in Ref. [52] a simple agent-based model for transmission 
risk prediction of COVID-19 in facilities was introduced. The approach 
models the interaction of agents under simple rules to model the 
behavior of coronavirus transmission. In spite of its interesting results, it 
is based on very unrealistic assumptions. The model does not consider 
recovered cases, the possibility that an agent can be infected outside the 
facility, or the use of a conventional time index as a base of its compu-
tation. As a consequence, the results based on this model cannot provide 
consistent conclusions to evaluate re-opening policies in facilities. 

Recently, other agent-based models have been suggested in literature 
for evaluating the transmission risk of the COVID-19. In Ref. [53], an 
agent-based formulation is proposed to emulate the health and eco-
nomic effects of social distancing interventions. This model analyzes 
different scenarios of social distancing interventions such as partial 
isolation or the use of face masks. Since this model uses a SEIR (Sus-
ceptible-Exposed-Infected-Recovered) structure with concentrated pa-
rameters, it is unable to obtain results of the transmission process from a 
person-to-person perspective. Other interesting works are proposed in 

Refs. [54,55]. In both studies, an agent-based approach is presented to 
evaluate the effect of considering different work schedules to reduce the 
spread of COVID-19 among construction workers. Finally, in Ref. [56], 
an approach to model the spread of SARS-CoV-2 in a closed classroom 
environment is considered. All of these agent-based models present 
interesting and illustrative examples of transmission risk in different 
scenarios. However, they are based on very unrealistic assumptions. 
These models do not consider in their operation important elements 
such as asymptomatic or vaccinated agents. The influence of asymp-
tomatic or inoculated members in the transmission process is very 
important. If these factors are not taken into account, the model will 
produce an overestimation in the number of infected members. There-
fore, all these methods have a lack of accuracy in their resulting trans-
mission patterns. 

Along with agent-based models, artificial intelligence (AI) and Deep 
Learning (DL) are two emergent computing areas that have also been 
used as main elements in different systems for drug discovery, diagnosis 
and transmission modeling of COVID-19. Most of the conventional 
methods for drug discovery and vaccine development are not as effective 
as desired, because they are prone to fail when pathogens are difficult to 
maintain and characterize under laboratory conditions. In contrast, with 
the inclusion of AI and DL techniques, the approaches for drug discovery 
and vaccine development present better results [57], given the oppor-
tunity to characterize new active medicaments and antigens through the 
modeling of their structures extracted from experimental data [58]. 
These approaches have been extensively considered for drug discovery 
and vaccine development of COVID-19. Some examples of these systems 
include the use of deep learning architectures (Ton et al., 2019; [59], 
multi-task deep models (Hu et al., 2019) and convolutional neural net-
works (CNN) [60]. The infection diagnosis is also a very important 
element to reduce COVID-19 transmission. Conventionally, the reverse 
transcriptase-polymerase chain reaction (RT-PCR) represents the most 
popular method for COVID-19 detection [61]. Despite its good results, 
the RT-PCR test presents several associated problems [62,63], such as 
complexity, dependency on a highly controlled environment and long 
duration. Recently, approaches of DL have been used to detect 
COVID-19 from medical images of tomography (CT), magnetic reso-
nance (MRI) or chest x-ray (CXR). These techniques represent a 
non-invasive test that presents accurate results in a very short time. 
Some examples of these detectors involve the use of CNN models [64], 
new DL architectures [65] and DL with metaheuristic techniques [66]. 

In this paper, we propose a novel agent-based system to model the 
transmission risk of COVID-19 in facilities. In its model, the system in-
volves three important elements. First, the model characterizes the 
behavior of the transmission process through the interactions among the 
individuals within the facility. Second, the model considers the possi-
bility of external infection, which allows associating the contagion dy-
namic of the locality (city, state, country) with the behavior of the 
transmission process inside the facility (school, office, factory). Third, 
the model includes the behavior of asymptomatic and vaccinated agents 
to increase the accuracy of the resulting transmission patterns. The 
model analyzes the spread of the disease in specific and limited spaces, 
namely schools or offices, where the population size can be controlled to 
evaluate various possible risk scenarios. Different from mathematical 
models or the already proposed agent-based model for COVID-19 
transmission risk, our method provides more realistic results that are 
helpful for evaluating plausible hypothetical re-opening policies. In 
order to illustrate its capacities, the proposed model has been applied to 
the evaluation of several hypothetical re-opening policies, such as: 
determining the effect of the frequency of the disinfection of surfaces 
and objects within the facility, obtaining the maximal capacity of in-
dividuals in a facility, assessing the effectivity of correct prevention 
practices imposed in workplaces and measuring the efficiency of 
restricting the mobility among the individuals inside the facility. The 
objective of pre-evaluating re-opening policies is to optimize time and 
resources, by providing a basis to identify which options, according to 
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the simulations, deliver the highest benefit, so that only the most 
effective policies are submitted for consideration. 

The paper is organized as follows: an introduction to agent-based 
modeling is presented in section 2. The proposed model is described 
in section 3. Simulation results are reported in section 4. Finally, con-
clusions are discussed in section 5. 

2. Agent-based modeling 

Agent-based models correspond to a new scheme for emulating 
complex systems with independent components that interact among 
them. Agents represent artificial elements programmed to accomplish 
pre-specified procedures [67]. While agents conduct their actions based 
on their programmed behavior, they interact and compete with other 
elements in the environment. The type of process executed by an agent is 
simple. They consider operations from easy choices (such as yes or no 
actions) to spatial movements. Different from other modeling strategies, 
agent-based models directly characterize causal relationships in the 
system, capturing the interactions over time among agents and agents 
with the environment [68]. This property allows agent-based models to 
adequately represent systems driven mainly by multiple interactions 
performed by heterogeneous agents in a common environment. Under 
such conditions, agent-based models are able to produce sophisticated 
Spatio-temporal observational relationships among the individuals [69]. 

The environment in which agents cooperate is a virtual map that can 
present the structure of a lattice or a multi-dimensional space. In this 
virtual map, agents can move freely without restriction. Therefore, the 
environment can be visually analyzed as a physical system [70]. With 
this property, it can be emulated the evolution of complex systems such 
as evacuations, traffic, disease transmission, biological systems, etc. 

Most agent-based models consider simple rules instead of using 
complicated behavioral structures or sophisticated architectures. Even 
though these rules are easy to build and understand, the produced 
models allow simulating diverse, complex behavioral patterns as a 
consequence of the cooperation generated among the set of simple 
agents [71]. 

The rules characterize the behavior of each individual in an abstract 
way [67]. It is relatively simple to describe the social and physical in-
teractions among the agents once the relevant elements of the system 
have been identified. Different types of information can be included in 
the rules, such as qualitative information, quantitative data, and expert 
opinions [68]. In rule construction, the idea is to find a trade-off be-
tween accuracy and simplicity. The rules need to be simple so that they 
can capture the main theoretical elements of the system [72]. Although 
the emphasis on model design is to maintain the rules as simple as 
possible, it is also determinant to guarantee that the rules meet the 
required accuracy level. However, too much detail can be 
counter-productive since it makes it difficult the observation the rela-
tionship between the agent and its corresponding behavior [73]. Once 
the important elements that influence the system have been detected, 
each must be characterized to represent how the specific properties of 
the agent and the collective interactions determine the action to be made 
by the agent. 

Definition 1. An agent is an element ai that involves a set of q internal 
data ad

i = {pd
i,1,…,pd

i,q}. The state and behavior of the agent are deter-
mined at a given point of time d by the values of their q internal 
parameters. 

Definition 2. A transition function F is an operator that maps the 
current state d of an agent ai to the next one d + 1 considering a set of 
conditions θ(ai). This process can be formulated as follows: 

ad+1
i =F

(
ad

i , θ
(
ad

i

))
(1)  

F represents the combination of a set of m behavioral rules {R1,…,Rm}. 

Definition 3. A rule Rj (j ∈ 1,…,m) represents an associative scheme 
that allows the modification of the state for an agent ad

i if it fulfills 
certain conditions imposed by θj(ad

i ). In the configuration of a rule Rj, it 
should be determined two important elements: the condition θj(ad

i ) and 
the updating mechanism Rj(ad

i ). θj(ad
i ) symbolizes the circumstances in 

which the rule Rj can be applied to ad
i while Rj(ad

i ) determines which and 
to what extent the internal parameters {pd

i,1,…, pd
i,q} of ad

i should be 
modified. The nature of Rj(ad

i ) could be deterministic or stochastic. 

Definition 4. An agent-based model is a computer model that involves 
a set of N agents Ad = {ad

1,…, ad
N} where the modification of their in-

ternal parameters is performed through a transition function F that in-
cludes a set of m rules {R1,…,Rm}. It represents the macroscopic state Ad 

of the system to be modeled in the instant d. 

In general, an agent-based model considers the following steps. In 
the initialization, the agents are configurated in a particular location or 
state. Then, assuming a specific order (sometimes randomly), every 
agent ai (i ∈ 1, …, N) is selected. Afterward, the selected agent ai is 
operated through a group of rules that modify its location, state, and 
association among other agents. These rules model the behaviors of 
agents when they interact with a realistic environment. Although the 
system is modeled from the individual point of view, its main properties 
are visualized from a global perspective. These processes are executed 
until a certain stop condition has been reached. 

The overall procedure of an agent-based model involves two primary 
operations [74]: the initialization phase and the operation phase. In the 
initialization phase, a set of agents is configured in an initial state. They 
might be located in a specific place or arranged with preliminary settings 
and attributes. After that, the operation phase starts by selecting each 
agent to update its status. The selection can be random or under a spe-
cific order. Every agent is updated according to programmed rules. 
These rules determine different possible decisions that agents can make. 
The consequences of the decisions made can change the status of the 
agent, such as its spatial position, its relationship with other agents, or a 
modification in any of its attributes. Predefined rules also consider the 
local influence of neighbor agents in updating the status of each indi-
vidual. Once all agents have been updated, the operation phase is 
repeated until a stop criterion is reached. Under this process is how quite 
complex models can be created using simple rules. 

3. The proposed agent-based model 

The proposed scheme is an agent-based model to characterize the 
contagion-recovery process in facilities. It can be used to test control 
strategies or contention measures. With its use, different hypothetical re- 
opening policies can be tested that are impossible to analyze in real 
conditions. In this section, the proposed agent-based system to model 
the COVID-19 contagion risk is described in detail. In concordance with 
the general procedure of an agent-based model, the description of our 
method starts with the initialization phase, followed by the operation 
phase. 

3.1. Initialization phase 

In this phase, a set A of N agents is defined as: 

Ad =
{

ad
1,…, ad

N

}
, (2)  

where the internal state of every agent is dynamically changing 
depending on the current day d. Then, these agents are uniformly 
distributed in a two-dimensional space of size p × q in order to set their 
initial spatial position. However, the location of the agents can be ar-
ranged differently, depending on the application or context. 

Then, the internal parameters of the individuals are established. In 
the model, we have considered twelve different attributes ad

i = {pd
i,1,…,
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pd
i,12}, such as the probability of getting infected (PI

con) inside the facility. 
It adopts three values (P1

con, P2
con,P3

con) which depends on the relationship 
that an individual maintains with the illness: If the agent has not yet 
been infected P1

con, if it has been already infected (reinfection) P2
con and if 

it is already vaccinated P3
con. The probability P1

con that a susceptible in-
dividual gets infected by COVID-19 depends on the local conditions. 
However, its average value, according to the World Health Organization 
[1], is within the interval [0.02, 0.03]. Several studies [75] demonstrate 
that prior infection with COVID-19 protects most people against rein-
fection. Under these studies, the probability of reinfection P2

con of an 
individual is around 0.0065. COVID-19 vaccines are effective at pre-
venting infection. According to different analyzes [76], the probability 
of an inoculated individual being infected P3

con is around 0.005. 
The possibility of external contagion is also considered, which is the 

risk of infection outside the work environment under analysis. Another 
included attribute is the probability of a fatal case (Pfat), which is based 
on the Case Fatality Rate (CFR) of the coronavirus disease. The move-
ment probability (Pmov), which represents the personal decision of each 
individual to move freely within the facilities, is also considered in the 
model. Similarly, we included the likelihood of making a small move-
ment (Psmo), which also represents the personal decision to move locally 
or at a considerable distance. Other important characteristics are the 
incubation and recovery time. The incubation time (Tinc) is the period 
after contagion and before symptom onset, while the recovery time (Trec) 
is the required time in quarantine. Furthermore, the infection status (S) 
of the agents is one of the main characteristics included in the model. 
Infection status registers the current situation of every individual, 
namely if the agent is infected, non-infected, in quarantine, or even 
dead. Finally, we have considered the spatial position of agents in the 
facility. Another important internal parameter that characterizes an 
agent is vaccination (V). It is a flag that indicates whether it has been 
inoculated or not. Another feature is the asymptomatic condition (As) of 
the agent. It determines whether the agent has the condition of pre-
senting symptoms of the illness or not. The reinfection flag RE is a 
parameter that indicates if an individual has been previously infected. 
Under this condition, if the agent is infected again, this implies its 
reinfection. The final internal parameters of the agent are defined by the 
x and y coordinates of its position within the facility. A summary of these 
characteristics is listed in Table 1. 

Internal attributes of every agent are assigned with random values 
within their interval of variation. Nevertheless, for applications, these 
parameter settings must be configured according to the values reported 
by the corresponding authorities of each location where the model will 
be used. Three of the most important internal parameters of an agent are 
the infection status S, the vaccination V, and the asymptomatic condi-
tion As. The infection status S can have three different states 0, 1, − 1, 
and − 2, which mean not infected, infected, in quarantine, and dead, 
respectively. The vaccination parameter V uses the value of one to 
indicate that the agent has been inoculated. On the contrary, the value of 
zero means that the individual has not been vaccinated. The asymp-
tomatic condition As adopts the value of one to show that the agent does 

not present symptoms of COVID-19 once infected. On the other hand, 
the value of zero implies that the individual presents the typical health 
manifestations of COVID-19. Finally, the reinfection flag RE allows 
indicating that an individual has been infected. With the use of this flag, 
it is possible to differentiate the behavior of individuals that have not 
been infected from those that have already presented the illness. 

In addition to the configuration of the internal attributes, simulation 
parameters must also be initially set. These parameters involve the 
number of agents N, which represents the population size within the 
facility; the initial amount of infected agents I, which is an optional 
parameter that can be considered in the simulations if there are infected 
agents from the beginning; the maximum number of simulation days 
dmax, which will determine the evolution of the epidemic during a spe-
cific time; the maximum number of movements per day Mmax, which 
mimics the regular activity of a person on a typical working day; the 
maximum length for local movements lmax, which is the distance of 
nearby places where it is necessary to go daily, such as the bathroom, the 
coffee station, the water cooler, etc.; the distances of contagion R, which 
is the minimum distance for a healthy distance; and the facility area p×
q, which is the size of the facility. The other two essential parameters for 
the simulation are the number of vaccinated individuals VN and the 
number of asymptomatic elements AsN present in the population N. The 
summary of these settings is listed in Table 2. 

3.2. Operation phase 

In the proposed agent-based model, we have considered six rules 
{R1,R2,R3,R4,R5, R6} to simulate more realistic effects of the corona-
virus disease on a closed environment. The first rule R1 controls the 
possibility of transmission among sick and healthy agents. The second 
rule R2 mimics the mobility and interactions of individuals through the 
facility. Additionally, the third rule R3 considers the probability that an 
agent can be infected outside the facility. Furthermore, the fourth rule 
R4 contemplates the incubation time, symptom onset, and quarantine 
onset. The fifth rule R5 characterizes the unfortunate fatal cases. Finally, 
the sixth rule R5 characterizes the recovery process. These rules repre-
sent the main components of modeling the behavior of the COVID-19 
disease within a facility. Each rule is explained from the perspective of 
its execution and processing. From this point of view, it is visualized how 
rules are applied to all individuals interacting inside the facility. A 
detailed description of the five rules and the computational procedure 
for simulation is given in the following subsections. 

3.2.1. Rule 1: contagion 
According to Refs. [77,78], there is evidence indicating that the 

COVID-19 viruses are released as microdroplets into the air through 
coughing, talking and exhalation. These droplets are small enough to 
float aloft in the air. Therefore, there exists a high risk of the inhalation 
of droplets (microdroplets) exposed to viruses at short distances be-
tween 1 and 2 m of an infected person ([1–4]). Under such conditions, 
social measures such as physical distancing between individuals must be 
considered. 

Based on the last report on the COVID-19 disease given by the World 

Table 1 
Attributes of agents.  

PI
con Contagion probability I = 1,2, 3 

Pfat Fatality probability 
Pmov Movement probability 
Psmo Small movements probability 
Tinc Incubation time 
Trec Recovery time 
S Infection status 
V Vaccination 
As Asymptomatic condition 
RE Reinfection flag 
x Axis position 
y Axis position  

Table 2 
Simulation parameters.  

N Number of agents or population size 
I The initial number of infected agents 
dmax Maximum number of simulation days 
Mmax Maximum number of movements per day 
lmax Maximum length for local movements 
R Distance of contagion 
p× q Facility area 
VN The number of inoculated elements in N 
AsN The number of asymptomatic agents in N  
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Health Organization (Organization, 2020), distancing measures allows 
for slowing the spread of the disease. Thus, the recommended physical 
distance is at least 1 m. However, in facilities, colleagues might need to 
communicate. Consequently, proximity may be indispensable for this 
communication, exposing themselves to being infected. Hence, rule 1 
simulates the contagion risk when individuals interact with each other 
avoiding a healthy distance. 

Under such circumstances, the rule R1 considers that each agent has 
a specific probability PI

con of getting infected, which depends on its 
relationship with the illness. Thus, if a non-infected individual ai is 
surrounded by at least one infected neighbor aj, and the neighbor agent 
aj is inside the ratio of contagion distance R, then the individual ai is 
prone to be infected by aj with a probability that depends on the nature 
of ai. If the agent ai has not yet been infected (RE(ai) = 0) and not 
inoculated (V(ai) = 0), it has a probability of being infected defined by 
P1

con. In the case of the individual ai has been already infected (RE(ai) =

1), it maintains a probability P2
con of being infected by aj. Finally, if ai is 

already vaccinated (V(ai) = 1), it presents a contagion probability of 
P3

con. This rule can be expressed as: 

Sd(ai)=
(
rand(0, 1)≤PI

con(ai)
)
α, (3)  

where Sd is the current infection status of individual ai in day d. A 
random value in the interval of [0,1] is represented by rand(0,1). The 
term α is the result of the activation function that evaluates the risk of 
contagion because an infected individual is too close to ai, which is 
defined as: 

α=

⎧
⎨

⎩

1,

(
∑N

j=1,∀j∕=i

(
dist
(
ai, aj

)
≤ R

)
β

)

≥ 1

0, otherwise

(4)  

α produces two different values, zero or one, that allow activating or 
deactivation of the rule. The value of one is produced when an infected 
agent aj is closer than a distance R from ai. Otherwise, the function 
delivers a value of zero deactivating the rule. In Eq (4), dist(ai, aj) is the 
Euclidian distance between agent ai and aj. On the other hand, β is a 
neighbor activation function that determines if the possible neighbor aj 

is infected. Its definition is given as follows: 

β=
{

1, Sd ( aj
)
> 0

0, otherwise
(5)  

β delivers two values. The value one is generated when the agent aj is 
infected. If the agent aj is not infected β will be zero. In the case of the 
agent ai had been infected after the operation of rule 1, two different 
parameters of ai are modified. The infection status Sd of an agent ai is 
changed from 0 to 1. 

3.2.2. Rule 2: mobility 
Mobility is essential in facilities. It represents one of the main pro-

cesses of interaction among agents and one of the leading causes of being 
infected. This rule determines the way in which agents interact spatially 
in their environment. In the proposed model, each agent has a move-
ment probability Pmov that mimics the personal decision to move to 
another place. Depending on this probability, an agent can move to 
another location or stay in its current position. Once decided on its 
movement, the model considers two distinct movement types: 
displacement to nearby places (local) and movements to distant places 
(long-distance displacement). Both displacements model the represen-
tative movements performed by agents inside the facilities [79,80]. The 
displacements to nearby places correspond to the most regular move-
ments performed by individuals when they interact in their environ-
ment. They represent movements such as taking a tool, making a 
maneuver, etc. On the other hand, movements to distant places corre-
spond to displacements achieved by the agents when they modify their 

locations far from their previous position. They correspond to move-
ments such as changes in the work area, visiting a certain department, 
going to the bathroom, etc. In the model, a local movement is charac-
terized by adding to the current position of an agent a random value 
within a certain interval [ − lmax, lmax] where lmax corresponds to the 
maximal magnitude of the movement. Contrarily, a long-distance 
displacement is modeled through a change of position of the agent to 
a random location inside the facility. 

In order to decide the kind of displacement performed by an agent, 
every agent maintains a probability Psmo called small movement prob-
ability. Its value allows modeling the particular decision of moving to a 
nearby place or a distant location. Therefore, under rule two R2, the 
position in the x and y axis of agents is changed according to the 
following expressions: 

xd+1(ai)=

{
X(ai), γ = 0
xd(ai), otherwise (6)  

yd+1(ai)=

{
Y(ai), γ = 0
yd(ai), otherwise (7)  

where xd+1 and yd+1 are the new positions of agent ai. The current 
location of the agent ai is determined by xd and yd, while γ is the 
movement activation function that determines if the agent has decided 
to move or to remain in the same place, which is defined as: 

γ =
{

1, rand(0, 1) ≤ Pmov(ai)

0, otherwise (8)  

γ produces two values. The value of one is produced if the probabilistic 
decision is positive. Under such conditions, the agent ai will experiment 
with a displacement. The value of zero is delivered when the probabi-
listic decision is negative, which means that the agent remains in its 
current position. Terms X(ai) and Y(ai) from equations (6) and (7) 
determine the movement of agents through axis x and y, respectively. If 
the agent has decided to move, the next decision will be the kind of 
movement, which can be a small or a distant displacement. Both types of 
motion for X(ai) and Y(ai) can be formulated as in (8) and (9), 
respectively: 

X(ai)=
(
xd(ai)+ (2(rand(0, 1)) − 1)lmax

)
δ + p(rand(0, 1))(1 − δ), (9)  

Y(ai)=
(
yd(ai)+ (2(rand(0, 1)) − 1)lmax

)
δ + q(rand(0, 1))(1 − δ), (10)  

where X and Y correspond to the new position of agent ai in the x and y 
axis, respectively. From equation (9), the first term 
(xd(ai)+(2(rand(0,1)) − 1)lmax)δ simulates a small movement, where 
lmax is the maximum radius for local movements. In contrast, the second 
term p(rand(0,1))(1 − δ) mimics moving to a distant place, where p is the 
size of one side of the. 

p × q facility area. Similarly, the first term from equation (10) cor-
responds to a small movement, while the second term to the long move, 
where q is the other side of the p × q facility area. The small movement 
activation function δ determines if the agent has decided to make a slight 
movement or not, which definition is given by: 

δ=
{

1, rand(0, 1) ≤ Psmo(ai)

0, otherwise (11) 

Therefore, if δ = 1 represents that the agent ai will experiment with a 
small movement; otherwise, the agent ai experiments a distant 
displacement. From equation (11), if the value of δ is one, then the 
second term of equations (9) and (10) becomes zero, which leads to a 
small movement. On the other hand, if the value of δ is zero, then the 
first term of equations (9) and (10) becomes zero, causing a distant 
movement. 
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3.2.3. Rule 3: external infection 
This rule simulates the possibility of an individual being infected 

outside the facility. Although the proposed agent-based model is intro-
duced to simulate the spread of the COVID-19 in a specific environment, 
it would not be realistic if the probability of external contagion was not 
considered. Therefore, this rule simulates what happens beyond the 
facilities in a general way. 

After a regular workday, people are exposed to infection in other 
places since they may have contact with infected individuals outside the 
facility. Consequently, the probability of external contagion is consid-
ered in the presented model, where agents may start a new workday 
already infected, putting at risk the health of their colleagues. 

Under such considerations, the rule R3 considers that a non-infected 
individual ai can be infected (changing its status to 1) according to a 
probability that depends on the nature of ai. If the agent ai has not yet 
been infected (RE(ai) = 0) and not inoculated (V(ai) = 0), it has a 
probability of being infected defined by P1

con. In the case of the individual 
ai has been already infected (RE(ai) = 1), it maintains a probability P2

con 
of being infected by aj. Finally, if ai is already vaccinated (V(ai) = 1), it 
presents a contagion probability of P3

con. Therefore, the external infection 
rule is modeled as follows: 

Sd+1(ai)=

{
1,
(
rand(0, 1) ≤ PI

con(ai)
)
ε > 0

Sd(ai), otherwise
, (12)  

where ε represents the non-infected test function. It indicates if the agent 
ai is or has been infected by the coronavirus disease. ε is formulated as 
follows: 

ε=
{

0, Sd(ai) ∕= 0
1, otherwise (13)  

ε produces two different values, zero or one. The value of one is pro-
duced if the agent ai has not been infected so far. Otherwise, the function 
delivers a value of zero, which means that the agent ai is or has been 
infected by COVID-19. 

3.2.4. Rule 4: incubation time, symptom onset, and quarantine 
According to the last situation report of the COVID-19 disease given 

by the World Health Organization (Organization, 2020), once an indi-
vidual has been exposed to the coronavirus, the symptom onset is not 
immediately. The disease takes a specific time to manifest symptoms. 
This time is called the incubation time, which ranges on average from 5 
to 6 days. On the other hand, asymptomatic individuals that can stand 
high viral loads remain without presenting any physical symptoms. 

In our model, the rule R4 simulates the process during incubation 
time, symptom onset, quarantine onset, and the final recovery. An 
infected individual can be aware after incubation time when symptoms 
associated with COVID-19 are evident. If symptoms are not severe, the 
recommendation is household isolation, which corresponds to the 
quarantine onset. In a favorable scenario, after the quarantine period, 
recovery is expected. 

Information given by the World Health Organization (Organization, 
2020) indicates that the incubation time ranges from 5 to 6 days. After 
that, people experience symptoms within 14 days, which is considered 
the recovery period in quarantine for mild/moderate symptoms. 

Therefore, in the proposed model, an agent firstly is not infected 
(Sd(ai) = 0). Then, it can be infected as a consequence of its iterations 
(Sd(ai) = 1). Once infected, if the individual is not asymptomatic 
(As(ai) = 0), it will be in quarantine (Sd(ai) = − 1). If, during the 
quarantine, the consequences are fatal, the agent dies (Sd(ai) = − 2). 
However, if the individual is asymptomatic (As(ai) = 1), it remains with 
the condition of infected (Sd(ai) = 1) without presenting a quarantine 
process. 

Based on the presented information, the rule R4 keeps track of the 
elapsed days during the incubation time Tinc of every not asymptomatic 

(As(ai) = 0) agent ai that has been infected. Under such conditions, Tinc 
starts with a value of 6 days. Then, its value is decremented until it as-
sumes the zero value. Thus, the incubation time is updated every day d 
as follows: 

Td+1
inc (ai)=

{
Td

inc(ai) − 1,
(
Sd(ai) > 0

)
and (As(ai) = 0

)

Td
inc(ai), otherwise

(14) 

When the incubation time is over (after six days), symptoms are 
evident, so the status of the infected agent change to quarantine 
(Sd(ai) = − 1). Hence, the status update can be expressed as: 

Sd+1(ai)=

{
Sd(ai),

(
Td

inc(ai) > 0
)

and (As(ai) = 0
)

− 1, otherwise
(15)  

3.2.5. Rule 5: fatal cases 
Unfortunately, the COVID-19 disease has left many fatal cases 

around the world. According to the information collected worldwide 
from December 2019 to September 2021, the global crude Case Fatality 
Ratio (CFR), which is the proportion of fatal episodes of illness, is 7% 
[1]. These cases correspond to infected individuals who experienced 
severe symptoms due to several underlying medical conditions such as 
diabetes, hypertension, chronic respiratory disease, cardiovascular dis-
ease, and cancer. The risk of severe disease also rises with age. 
Furthermore, 20% of the cases require hospitalization, while 5% require 
intensive care and ventilation, impacting health systems. The vaccine for 
COVID-19 is effective. It can protect people from COVID-19, reducing its 
fatal effects if they are infected. In general terms, an inoculated person 
can reduce the acute effects by up 90% [81]. This means that only less 
than 10% of the vaccinated individual could suffer a fatal case. 

Based on the presented information about fatal cases, the proposed 
model includes a fatality probability Pfat for each not inoculated (V(ai) =

0) agent ai. According to the CFR, this probability ranges from 0 to 0.07. 
However, if the agent ai has been vaccinated (V(ai) = 0) such a prob-
ability is reduced by a 10% percent (Pfat⋅0.1). Thus, if an individual ai is 
in quarantine (Sd(ai) = − 1), then this agent can die any day after 
symptom onset, depending on its CFR and whether it has been inocu-
lated or not. When an agent dies, its status change to Sd(ai) = − 2. 
Hence, R5 simulates the unfortunate fatal cases under the following 
expression: 

Sd+1(ai)=

{
− 2,

(
rand(0, 1) ≤ Pfat(ai)

)
and (V(ai) = 0

)

Sd(ai),
(
rand(0, 1) ≤ Pfat(ai)⋅0.1

)
and (V(ai) = 1

) (16)  

where the quarantine activation function σ evaluates if the agent ai is in 
the recovery period, expressed as: 

σ =

{
1, Sd(ai) = − 1
0, otherwise (17)  

σ produces two values. The value one is generated when the agent ai is 
quarantine while it is zero if the agent ai is in any other state. 

3.2.6. Rule 6: recovery process 
Once an agent is in quarantine, rule six R6 considers its recovery 

process. First, it registers the elapsed days after symptom onset to 
simulate the recovery period Trec. Then, the infection status S is reset to 
not infected Sd(ai) = 0. Therefore, Td

rec starts with a value of 14 days. 
Then, its value is decremented until it assumes the zero value. 

Td+1
rec (ai)=

{
Td

rec(ai) − 1, Td
rec(ai) < 0

Td
rec(ai), otherwise

(18) 

After 14 days, the quarantine is over. Then, the agent is not infected 
(Sd(ai) = 0.) anymore. The reinfection flag RE is also set to 1. This means 
that the agent ai has been already infected once. Under such conditions, 
it already has the capacity to be infected again. 
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3.2.7. Computational procedure 
The computational procedure of the model starts with the initiali-

zation phase, in which general parameters and the attributes of agents 
should be configured. Then, the operation phase is executed iteratively 
until the maximum number of iterations dmax has been reached. Every 
iteration is considered a simulation day that is divided into the time 
individuals spend inside and outside the facility. Inside the facility, 
several local movements can be performed by the agents in the facility, 
which emulate the regular activity of a person on a typical working day. 
Under such conditions, if an individual changes its position as a conse-
quence of rule two, then it is exposed to contagion by rule one. The 
maximum number of movements allowed per simulation day is deter-
mined by Mmax. In the process, it is also considered individuals that 
interact outside the facilities. Thus, the external infection is performed 
by rule three. Finally, each simulation day finishes when rules four, five, 
and six are applied. The general procedure is summarized in Algorithm 
1. In this paper, the proposed agent model defined in Algorithm 1 has 
been implemented in MATLAB® code. 

Algorithm 1. Computational procedure of the proposed agent-based 
model.  

4. Experimental results 

In this paper, the proposed model has been developed to compare 
alternative hypothetical re-opening policies. The option of pre- 

evaluating re-opening policies allows saving important time and re-
sources, considering only those options which, according to the simu-
lations, deliver the highest benefit. 

The experimental section consists of five tests. In the first one (4.1), 
the generic operation of the model is presented. From the second to fifth 
test, the proposed model is used to test alternative hypothetical re- 
opening policies such as (4.2) the effect of the regularity in the disin-
fection of surfaces and objects, (4.3) the determination of the maximal 
capacity of individuals in a facility for maintaining a low risk, (4.4) the 
evaluation of the effectivity in following correct prevention practices, 
(4.5) the restriction effect of the mobility among the individuals inside 
the facility and (4.6) discusses the validation of the proposed agent- 
based model. The objective of all these computer experiments is to 
illustrate the use of the model to evaluate re-opening policies in simple 
examples instead of adopting complex contexts. Too much complexity in 
the scenarios can be counter-productive since it makes it difficult the 
observation of the produced results. Once the important elements that 
influence a re-opening policy have been detected, they are emulated in 
the simplest way. All the computational experiments in this study have 
been executed in MATLAB® on a PC i5 with a 3 GHz and 12 GB of RAM 
memory. 

To evaluate correctly the results in the computer experiments, the 
significant point P is adopted as the optimal decision value. It represents 
the point at which a variable or set of variables reaches a representative 
behavior. This point is used extensively in the computational test to 
determine the outbreak end and other essential data in the simulation 
results. The significant point is the location where the values of a vari-

Fig. 1. Two examples for the determination of the significant point: (a) incremental case JI (b) decremental case JD.  
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able v1 are no longer critical in terms of its final result in comparison 
with a second variable v2 (where the curve visibly bends). The process of 
computing the significant point P is similar to determining the knee 
point [38] in engineering. There are not several methods for identifying 
knee points listed in the literature [57, 58]. Among them, in the pro-
posed approach, we employ the scheme presented in [57] due to its 
simplicity. Under this scheme, the m values from both variables v1 = {v1

1,

…, v1
m} and v2 = {v2

1,…, v2
m} are normalized so that their values range 

from 0 to 1. This normalization process produces two new variables 
defined by n1 and n2 generated as follows: 

n1 =
v1

v1
max

, n2 =
v2

v2
max

, (19)  

where v1
max and v2

max symbolize the maximal values from the variables v1 

and v2, respectively. 
Both normalized variables n1 = {n1

1,…, n1
m} and n2 = {n2

1,…, n2
m} can 

be related to producing a set of bidimensional points R = (r1,…, rm) 
where each element rw (w ∈ 1,…,m) presents the following relationship 
rw = (n1

w,n2
w). The relation R between n1 and n2 can be incremental or 

decremental. R maintains an incremental behavior if the values of both 
normalized variables n1 and n2 increase as the index of each element rw 
also, increases from 1 to m. On the other hand, R maintains a decre-
mental behavior when the values of n1 are reduced as the magnitudes of 
n2 increase. 

Assuming the normalized information from n1 and n2, an objective 
function J is defined, which associates the values from v1 with regard to 
its significance with v2. The values of J depend on the behavior of the 
relation R. Therefore, J is computed as follows: 

JI =n1 − n2, JD = n1 + n2, (20)  

where JI represents the computation of J considering an incremental 
relation R while JD corresponds to the determination of J in the case of a 
decremental case. The objective function J = {J1,…, Jm} is also a vari-
able of size m. One interesting property of J is that it has only one global 
optimum value. This value represents the significant point P, which is 
calculated as P = max(J) for the incremental case and P = min(J) for the 
decremental scenario. 

Fig. 1 illustrates two examples of the determination of the significant 
point. In the examples, a set of ten points (m = 10) that involve the 
normalized variables n1 and n2 is considered. Fig. 1(a) shows the in-
cremental case, while Fig. 1(b) exhibits the decremental scenario. 

In this paper, two important indexes are used in the computer ex-
periments outbreak start point OS and outbreak endpoint OE. The 
outbreak start point (OS) represents the point (in the number of days) at 
which the number of infected agents reaches 10% of the total population 
size N. However, the number of infected agents can be configurated by 
another percentage or a fixed number of elements F depending on the 
context to be simulated. On the other hand, the outbreak endpoint (OE)
corresponds to the significant point P considering an incremental rela-
tion R between the number of accumulated infected agents (v1) and the 
number of days (v2) obtained by the agent model. 

4.1. First test. Simple performance 

In the first experiment, the basic performance of the proposed model 
is exemplified. Under this test, the agent-based model is used to estimate 
the behavior of the COVID-19 disease. The objective is to obtain valu-
able information about the evolution of the coronavirus spread within a 
facility. The computer experiments have been conducted using the 
parameter settings of Tables 3 and 4, which correspond to the values of 
the general parameters and the attributes of agents for the initialization 
phase. From the parameters of Table 3, the elements of the contagion 
probability (PI

con) are obtained as it is explained in subsection 3.1. On the 
other hand, the probability of fatal cases (Pfat), incubation time (Tinc)

and recovery time (Trec) have been extracted from (Organization, W. H., 
2020). They represent the nominal values from these attributes. On the 
other hand, the parameters of movement probability (Pmov) and small 
movements probability (Psmo) from Table 3 represents the typical values 
of individual mobility in facilities extracted from Refs. [79,80]. 

Initially, the status S of all agents is zero since it is considered that 
there are no infected individuals in the beginning. However, it is 
possible to configure an initial number of infected individuals I among 
the population. In this case, it is assumed that they are in incubation 
time and have not experienced symptoms. 

In the initialization phase, the parameter values of the agents are 
randomly assigned using a uniform distribution considering their spe-
cific ranges. Under such conditions, it is generated a heterogeneous 
population that emulates real conditions. Nevertheless, during the 
operation phase, the position of the agents is changed according to rule 
two. Regarding the attributes of the agents, every individual has 
different probabilities of contagiousness and fatality. Having different 
probability values within the established ranges simulates the particular 
characteristics and health conditions of every human being. On the other 
hand, the incubation time ranges from 5 to 6 days, while the recovery 
time is set to 14. All these values have been taken from the statistics 
reported by the WHO. The number of vaccinated individuals within the 
population is 50%. This value corresponds to the average number of 
inoculated people around the world, according to the WHO. 

Similarly, the probability of movement and small movements are 
different for every agent. In the simulation, it has been considered that 
restrictive measures have been adopted. Therefore, these probabilities 
are limited to a low range. Since agents have mobility restrictions, the 
possibility that they will move into the facility ranges from 0.3 to 0.5. 
Besides, the probability that agents move to essential places is higher 
than displacements to distant places. Thus, the small movement prob-
ability ranges from 0.7 to 0.9. 

The simulation was conducted for one year (365 days), considering a 
facility of 300 m2 and a population of 200 agents. Additionally, it is 
assumed that an individual makes ten movements on average during a 
typical 8-h workday. Besides, the maximum radius for a small 
displacement is considered 5 m. More than 5 m is counted as a distant 
place. Once the initialization phase is complete, the simulation starts 

Table 3 
Initial values of the attributes of agents.  

Attribute Value range 

Contagion probability P1
con [0.02, 0.03] 

P2
con [0.0060, 0.0065] 

P3
con [0.0045, 0.0050] 

Fatality probability Pfat [0.007, 0.07] 
Movement probability Pmov [0.3, 0.5] 
Small movements probability Psmo [0.7, 0.9] 
Incubation time Tinc [5, 6] 
Recovery time Trec 14  

Table 4 
Initial value of simulation parameters.  

Parameter Value 

N Number of agents or population size 200 
I The initial number of infected agents 0 
dmax Maximum number of simulation days 365 
Mmax Maximum number of movements per day 10 
lmax Maximum radius for local movements 5 m 
R Distance of contagion 1.5 m 
p×

q 
Facility area 1300 m2 

VN The number of inoculated elements in N 50% (100) 
AsN The number of asymptomatic agents in N 40% (80)  
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following the procedure reported in Algorithm 1. The Spatio-temporal 
evolution of the coronavirus spread is shown in Fig. 2, where the sta-
tus of the agents on different simulation days is illustrated. From Fig. 2, 
non-infected agents can be identified by circle markers, infected agents 
by square circles, agents in quarantine by diamond markers, and death 
agents by asterisk markers. It is important to remark that agents in 
quarantine (diamond markers) and death agents (asterisk markers) are 
represented in the spatial-temporal snapshots only for illustration pur-
poses. They do not participate in the emulation process. Their markers 
are located in their last detected position in the facility. It is assumed 
that agents in quarantine are insolated (in other different places) while 

death agents will not be active anymore. 
From Fig. 2 (a), it can be observed that all agents are initially non- 

infected. After five simulation days, Fig. 2(b) shows 22 infected 
agents, which is a significant number considering that just a few days 
have elapsed. These results suggest that the coronavirus disease spreads 
abruptly. 

Infected individuals who are in isolation with symptoms can be 
visualized in Fig. 2 (c). These agents can be identified by diamond 
markers. It is assumed that the entrance to the work facilities is pro-
hibited for individuals under such conditions. Therefore, agents with a 
quarantine status can be influenced only by rules four and five, which 

Fig. 2. Simulation evolution of the COVID-19 spread considering different simulation days: (a) day 1, (b) day 5, (c) day 15, (d) day 30, (e) day 90, (f) day 120.  
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means that they are under a recovery process outside the facility (either 
at home or in a hospital) but exposed to being part of the fatal case 
statistics. 

The fatal case takes place approximately from day 90; see Fig. 2. (e). 

From the figure, one dead agent is illustrated as an asterisk marker. 
Evidently, the fatal case is excluded from the course of the simulation. It 
is supposed that recovered agents are back to work but with a reduced 
probability of getting the coronavirus disease. 

Finally, Fig. 2. (f) shows the evolution of the COVID-19 disease after 
four months of simulation. From the figure, a closer inspection reveals 
that the number of infected cases has decreased since there are more 
immune individuals (agents with a very low probability of being infec-
ted) and fewer agents in the facility due to those under quarantine, 
which reduces the probability of new COVID-5 positive cases. 

In addition to the evolution of the COVID-19 spread, other useful 
information is presented. This information includes the accumulated 
register of infected agents over time, the number of positive cases per 
day, the accumulated recovered, the number of recovered agents per 
day, the accumulated fatal cases, the current positive cases, the 
currently infected individuals in incubation time, and the current agents 
under quarantine. Since the proposed agent-based model is a stochastic 
method, the reported results consider the average of 30 independent 
simulations. 

The accumulated COVID-19 positive cases are illustrated in Fig. 3 
(a), where it can be observed how the infected agents increase through 
the days until, eventually, all individuals are infected. The number of 
infected reaches more than 200 since there are some cases of re- 
infection. The generated curve clearly shows how the spread of the 
coronavirus rises rapidly during the first month, which can be consid-
ered a critical period in the analysis. The figure illustrates the outbreak 

Fig. 3. Analysis of infected cases: (a) accumulated cases and (b) the number of new positive cases per day.  

Fig. 4. Comparative of infected, recovered, and fatal cases considering the 
appearance of the first, 50%, and 100% of the cases. 

Fig. 5. Analysis of recovered cases: (a) accumulated cases and (b) the number of new recovered instances per day.  
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endpoint OE that characterizes the system response in terms of the 
number of infected agents. In order to evaluate the size of the outbreak 
correctly, the number of days in which all the N agents in the facility 
have been infected cannot be considered a descriptive index since many 
individuals could maintain a very low probability of being infected (or 
even immunity). Under such conditions, the number of days required to 
infect all of the individuals could be longer than necessary to evaluate 
the duration of the infection in the facility. Therefore, it is defined as the 
outbreak endpoint OE. This point represents the significant point P 
considering an incremental relation R between the number of accumu-
lated infected agents (v1) and the number of days (v2). Fig. 3(a) exhibits 
the location of the outbreak endpoint OE, which is presented in 23 days. 
On the other hand, Fig. 3 (b) shows the number of new positive cases per 
day. From the figure, it can be observed that the maximum number of 
infected agents per day is 14; this maximum peak is reached approxi-
mately at day 20. After one and a half months, the number of infected 
individuals per day starts to decrease. 

Fig. 4 shows the comparative analysis which is reported the day 
when the first infected individual appears, the time when half of the 
agents are positive for COVID-19, and the day when all individuals get 
infected. From this figure, a closer inspection reveals that the first 
infected case occurs the day 2; half of the agents are positive in 
approximately 13 days, while all agents were infected by day 216. 

The accumulated recovered cases are illustrated in Fig. 5 (a), where it 
can be observed the evolution of the agents that have successfully 
overcome the coronavirus disease. Fig. 5 also shows that, at the end of 
the simulation, not all individuals manage to recover from this illness. 
Fig. 5 (b) indicates the number of new recovery cases per day. From the 
figure, it can be observed that the maximum number of recovered agents 
per day is 13; this maximum peak is reached approximately at day 24. 
After one and a half months, the number of recovered cases starts to 
decrease. According to the comparative analysis in Fig. 4, the first 
recovered cases appear on day 21; 50% of the recovered individuals 
occur approximately in one month. Besides, 100% of the cases manage 
to overcome the disease on day 351. On the other hand, there is a fatal 
case that happens on day 90. 

Finally, the behavior of the current infected cases on every simula-
tion day is illustrated in Fig. 6. The figure shows the number of infected 
agents each day and the evolution of the infected individuals under the 
quarantine period for each simulation day. From Fig. 6, it can be seen 
that the number of cases under quarantine is lower than the number of 
the total infected cases, which is consistent with the number of asymp-
tomatic agents present in the population. 

4.2. Second test. Effect of the number of vaccinated elements in a 
population 

The reduction in the risk of contagion of COVID-19 happens if a high 
number of individuals within a population presents a very low proba-
bility of infection. Under such conditions, it is unlikely the transmission 
from a person-to-person perspective. As a consequence, not only the 
individuals with a low probability of infection are protected but also the 
entire population. Therefore, if the number of individuals with a very 
low probability of being infected is high enough, the spread of the 
COVID-19 will tend to slow down. 

There exist two ways to reduce the probability of COVID-19 infec-
tion: Reinfection and inoculation. From the reinfection perspective, the 
reduction can be attained if a high number of the population has been 
recovered from COVID-19 developing protective antibodies that avoid 
future infection. Experts suggest that the transmission risk is reduced 
when around 80% [82] of the population has recovered from COVID-19. 
However, the infection of this number of individuals is too high that 
might provoke several deaths and the collapse of the health system. 

The reduction in the transmission of COVID-19 can also be attained 
through vaccination. Under this mechanism, if enough elements within 
the population have been inoculated, they develop antibodies that 
protect them against the infection. Different from the reinfection 
method, vaccination reduces the transmission risk strongly without 
provoking the disease or health complications. 

In the second test, it is evaluated the influence of inoculated in-
dividuals in the population as a mechanism to reduce the probability of 
infection. The objective of this experiment is to determine the minimum 
percentage of individuals inside a facility that is necessary to inoculate 
to reduce the probability of contagion from COVID-19 substantially. 

To obtain the minimal percentage of vaccinated elements PorMinVac 
inside of a facility of dimension D, it is considered the following pro-
cedure. Firstly, the agent model is configured with the dimension D of 
the facility. Then, several simulations are conducted, varying the num-
ber of vaccinated agents VN from 0 (0%) to N (100%). For each number 
of inoculated individuals VNi within the interval [0, N], a simulation i is 
executed to evaluate the influence in the transmission risk produced by 
VNi individuals interacting inside the facility of dimension D. The 
transmission risk is evaluated considering the outbreak start point OS,
which determines the point where the high rate of contagion starts (in 
the number of days). Once calculated, the association of each outbreak 
start point OSi for each number of inoculated elements VNi , the minimal 
percentage of vaccinated elements PorMinVac is determined considering 

Fig. 6. Evolution of the current infected cases in each simulation day consid-
ering the total infected and the agents under quarantine. 

Fig. 7. Results of the second experiment to determine the minimal percentage 
of vaccinated elements PorMinVac to reduce the contagion risk. 
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the significant point P of the incremental relation JI presented by the 
percentage of vaccinated agents (v1) and the required number of days 
(v2). P represents the location where the number of vaccinated agents 
VNi are no longer critical in terms of the transmission risk(where the 
curve visibly bends). 

In each simulation of the experiment, the system is set considering 
the configuration of Tables 3 and 4 with the parameter VN varying from 
0 (0%) to N (100%). Fig. 7 shows the averaged results of this experiment 
(30 different independent executions). Therefore, the minimal per-
centage of vaccinated elements PorMinVac inside of a facility that allows 
reducing the contagion risk is determined considering the significant 
point P of the incremental relation JI presented by the percentage of 
agents from class I (v1) and the required number of days (v2). According 
to the significant point, it can be seen that more than 80% of vaccinated 
individuals produce low transmission rates. Under this scenario, when 
more than 80% of the agents in the workplace are inoculated, the risk of 
transmission is drastically reduced. 

4.3. Third test. Maximal capacity of individuals in a facility 

It is evident that the fewer individuals interact in a physical space, 
the less will be their probability of infection. However, allowing the 
admission of a very small number of individuals has strong implications 
regarding the productivity or performance of the workforce by the 
institution in charge of the facility. In the third test, the proposed model 
is used to determine the maximal capacity of individuals in a facility 
maintaining the lowest transmission risk. 

To determine the maximal number of individuals maxI inside of a 
facility of dimension D, it is considered the following procedure. Firstly, 
the agent model is configured with the dimension D of the facility. Then, 
several simulations are conducted, varying the number of agents N from 
a low limit (LowN) to a high boundary (HihghN). LowN represents a very 
reduced number of individuals. On the other hand, HihghN symbolizes an 
exaggerated number of individuals. In order to reduce the number of 
simulations, it can also be used as HihghN the allowed number of in-
dividuals that typically work in the facility (before the COVID outbreak). 
For each number of individuals Ni within the interval [LowN, HihghN], a 
simulation i is executed to evaluate the associated transmission risk 
produced by Ni individuals interacting inside the facility of dimension D. 
The transmission risk is assessed considering the outbreak start point OS,
which determines the point where the high rate of contagion begins (in 
the number of days). Once calculated, the association of each outbreak 
start point OSi for each Ni, the maximal capacity of individuals maxI is 
determined considering the significant point P of the decremental rela-

tion JD presented by the number of agents Ni in the facility (v1) and the 
required number of days (v2) identified by the outbreak start point OSi. P 
represents the location where the number of agents Ni are no longer 
critical in terms of the transmission risk(where the curve visibly bends). 

In the third experiment, the number of agents Ni within the facility is 
varied from 10 (LowN) to 300 (HihghN). In the evaluation, the size D of 
the facility is set to 300 m2 only as an example. Then, by using the 
proposed agent model, the system is simulated in the configuration of 
Tables 3 and 4, while the outbreak start point OS is registered by each 
number of individuals Ni. Agent-based models are stochastic ap-
proaches. Therefore, in order to eliminate the random effect, each 
simulation is executed repeatedly 30 times. Under such conditions, the 
results reflex the averaged outbreak start point OS obtained during the 
evaluations for each number of agents Ni in the facility. 

Fig. 8 shows the association between the number of agents Ni in the 
facility and the number of days obtained as a result of their respective 
OSi values. Therefore, the maximal capacity of individuals maxI in a 
facility is determined considering the significant point P. From Fig. 8, it 
is determined that the significant point is obtained when maxI = 50. This 
fact indicates that less than 50 agents in the facility exhibit low trans-
mission rates since the obtained outbreak start points (OS) require a 
higher number of days to produce the outbreak. Under such circum-
stances, the facility can maintain less than 50 individuals inside, pre-
senting a very low transmission risk. Contrarily, if the number of 
individuals Ni is higher than 50, the rates of transmission increase sig-
nificatively, producing faster outbreaks. 

4.4. Fourth experiment. Effectivity of correct prevention practices imposed 
in workplaces 

In the fourth test, the model is used to evaluate the effect of the 
prevention measurements for diminishing the COVID-19 transmission 
risk within the workplace. Correct prevention practices to reduce 
transmission of COVID-19 that can be used in all workplaces involve 
frequent disinfection with alcohol or hand-washing and the wearing of 
masks where distancing is not realizable. The consideration of such 
measures diminishes significatively transmission probability. 

In the experiment, each agent ai from the population A is classified 
into two types: I) agents that are responsible and follow the prevention 
practices and II) individuals that are reluctant in this consideration. 
Since agents from class I follow the prevention measurements strictly, 
they maintain a low probability of being infected. Under such condi-
tions, each agent from class I, it is assigned a low value of the contagion 

Fig. 8. Results of the third experiment to obtain the capacity of the facility.  Fig. 9. Results of the fourth experiment to determine the effectiveness of cor-
rect prevention practices imposed in workplaces. 
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probability PI
con . Therefore, the PI

con values for all agents from class I are 
set to 0.0001. On the other hand, PI

con values from the agents of class II, 
which do not follow the sanitary rules, are generated with random 
numbers within their typical limits defined in Table 3. Such values 
represent the standard contagion probabilities inside the workplace. 

In the test, it is assessed the importance that a percentage of the agent 
elements N follows the prevention measurements (class I) in order to 
reduce the infection probabilities. In the experiment, the percentage of 
agents from class I varied from 0 to 100% and was deliberately induced 
inside the population. Then, by using the proposed model, the system is 
simulated while the outbreak start point OS is registered. Excluding the 
values of PI

con for agents from class I, the remaining parameters are 
configurated according to Tables 3 and 4 

Fig. 9 shows the averaged results of this experiment (30 different 
independent executions). Therefore, the minimal percentage of agents 
from class I, which allow reducing the contagion risk, is determined 
considering the significant point P of the incremental relation JI pre-
sented by the percentage of agents from class I (v1) and the required 
number of days (v2). According to the significant point, it can be seen 
that more than 70% of the individuals from class I produce low trans-
mission rates. Under this scenario, when more than 70% of the agents in 
the workplace are cooperative and follow sanitary measures, the risk of 
transmission is drastically reduced. 

4.5. Fifth experiment. The efficiency of restricting the mobility among the 
individuals inside the facility 

The fifth test, it is evaluated the influence of restricting mobility 
among the individuals inside the facility through the proposed model. 
Our agent-based model emulates the basic movements performed by 
individuals in the facilities. They include local and long-distance dis-
placements. In the model, an agent decides the type of movement in 
terms of a probabilistic rule. A small displacement is performed with a 
probability of Psmo while a long-distance is achieved with a probability of 
(1 − Psmo). 

As a re-open policy, it is considered the restriction of mobility. With 
this restriction, contact among individuals is regulated, reducing the risk 
of transmission. To evaluate this hypothesis, the probabilities of the 
proposed model are altered to exclude the long-distance displacements. 
Therefore, the probability Psmo that determines the local movements is 
set to Psmo = 1. Under this scenario, the probability of performing long- 
distance displacements is eliminated (1 − Psmo = 0). 

In order to contrast the model behavior when the mobility is limited, 
the analysis considers both cases: a normal case and if the mobility is 
restricted. In both scenarios, the models are executed considering the 

parameters of Tables 3 and 4 Nevertheless, in the case of the mobility 
restriction, the probability Psmo is set to 1, discarding the long-distance 
displacements. 

Fig. 10 shows the significant point or outbreak endpoint OE for both 
cases. According to the figure, the outbreak endpoints are about 23 and 
49 days for the normal and mobility restriction case, respectively. The 
more is the amount of days required for the OE, the lower will be the 
contagion risk for the individuals inside the facility. Therefore, it is clear 
that the re-opening policy of restricting mobility reduces the trans-
mission rate slightly within the workplace. Under this experiment, it is 
clear that the intervention measurement does not reduce significatively 
the risk of contagion in comparison to other already contentious 
practices. 

4.6. Validation of the model 

Model validation of a computerized model refers to whether the 
model maintains enough range of accuracy in terms of the domain of its 
application. Agent-based approaches present several characteristics. 
They model several internal behaviors of the involved individuals that 
determine the model operation. There is an absence of comparability 
between traditional models and those based on agent-based formula-
tions (Bertozzi et al., 2007). There are no empirical data that represent 
quantitively how should operate several internal processes within an 
agent-based model. Finally, there is not a standard methodology for 
building agent-based models. Under such conditions, it is not possible to 
validate an agent-based model from a traditional perspective. 

The most accepted method (Anaya, 2021A; Anaya, 2021B) to vali-
date the performance of agent-based approaches is to relate computa-
tionally the results of the agent model with already available actual 
data. Agent-based approaches model situations that involve different 
human interactions. Therefore, it is difficult to obtain actual data 
through real experiments since it is impossible or unethical (infect in-
dividuals deliberately). One alternative is to design an experiment with 
the agent-based model for which there exists information already ac-
quired [83]. This information could be data extracted for other methods, 
numerical guesses that experts share, etc. Under this direction, in our 
approach, the agent-based model has been used to reproduce the results 
of two different cases for which there exists information in the COVID-19 
literature. The first case represents determining the minimal percentage 
of vaccinated elements inside the population to reduce the transmission 
risk. This value refers to herd immunity, and it is available in the liter-
ature. Our approach obtained that it is necessary an 80% of inoculated 
agents inside the population to reduce the transmission risk, which is the 
heard immunity reported in several studies [82]. The second case is to 
evaluate the effectiveness of correct prevention practices imposed in 

Fig. 10. Outbreak endpoints for the (a) normal and (b) mobility restriction cases.  
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workplaces. This value has been evaluated according to several experts. 
In this case, the proposed agent-based model found that 70% of the 
individuals must observe the protection intervention to reduce signi-
ficatively the number of contagions. This result coincides with the value 
delivered by several studies or suggested by many experts (Anaya, 
2021A; Anaya, 2021B). 

The most significant problem to validate our method with already 
available actual data is the lack of appropriate databases. All databases 
present information on the number of infected people in terms of 
aggregated variables that accumulate cases in significant regions or 
countries. Since our approach evaluates the transmission risk from a 
microscale perspective, it is necessary to use the information of infected 
members collected from small sections such as universities, facilities, 
workplaces, and factories. These data are not publicly available. One 
exception is the information published on (Homepage A) which reports 
the number of weekly infected members (students, professors, or staff 
elements) of McGill’s University in Canada. The information is updated 
every Tuesday with confirmed COVID-19 cases reported to McGill’s Case 
Management Group. To evaluate our model, we use these data to 
compare the result produced by the simulations. From the data pre-
sented on (Homepage A), it has been selected the time window from 
January to February 2022. This period of eight weeks is considered 
because, during this time, the activities of the university have been 
declared physically obligatory within the facilities. Under such condi-
tions, the interaction among the members (that is, the main point of the 
agent-based model) is guaranteed. 

To reproduce the actual data from (Homepage A), a computer 
experiment has been conducted using the parameter settings of Table 5, 
which correspond to the values of the general parameters and the at-
tributes of the agents during the simulation. Most of these parameter 
values have been obtained from the official pages of McGill’s University. 

The number of vaccinated elements VN has been obtained from 
(Homepage B). It refers to the percentage of individuals inoculated in 

Montreal, Canada, where it is located McGill’s University. Our model 
produces, as a result of the simulation, the number of infected people 
daily. Fig. 11(a) presents the results produced by the agent-based model 
during the simulation. Since our model is able to predict the number of 
infected members daily, it is also possible to determine the day of the 
week in which it is produced the highest number of incidences. Fig. 11 
(b) shows a histogram that visualizes the frequency of infected members 
per day of the week. As can be seen from Fig. 11(b), Wednesday, 
Tuesday, and Thursday are the days on which the number of infected 
members is higher than on the weekends. 

For the evaluation of our model with the actual data, the information 
delivered by our model has been integrated to present the incidences 
weekly. Fig. 12 shows the comparative view between the results pre-
dicted by the model and the actual information. An analysis of Fig. 12 
demonstrates that the predicted results are quite close to the actual 
values. Therefore, it is clear that the proposed model can be used to 
appropriately know the COVID-19 transmission risk from a microscale 
perspective. To evaluate numerically the accuracy of the predicted 
values by the proposed model, the mean absolute percentage error 
(MAPE) is calculated. MAPE assesses the differences between the pre-
dictions of a forecasting method and the real data of the process. MAPE is 
computed as follows: 

MAPE=
100
n
∑n

i=1

⃒
⃒
⃒
⃒
dai − Pi

dai

⃒
⃒
⃒
⃒ (21) 

Table 5 
Parameter values for the experiment.  

Parameter Value 

N Number of agents or population size 41,230 
I The initial number of infected agents 0 
dmax Maximum number of simulation days 60 
Mmax Maximum number of movements per day 10 
lmax Maximum radius for local movements 5 m 
R Distance of contagion 1.5 m 
p×

q 
Facility area 6.47 Km2 

VN The number of inoculated elements in N 80% 
AsN The number of asymptomatic agents in N 40%  

Fig. 11. Simulation results of the agent-based model to predict the information of actual data. 14(a) presents the results produced by the model during the 
simulation, and 14(b) shows a histogram that visualizes the frequency of infected members per day of the week. 

Fig. 12. Comparative view between the results predicted by the model and the 
actual information. 
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where dai represents the actual value and Pi symbolizes the predicted 
value. Their difference is divided by the actual value At. The MAPE value 
obtains its magnitude as the integration of the absolute difference for 
every predicted point in time and is divided by the number of fitted 
elements n. Under this index, it can be established that our model 
maintains a MAPE value of 9.7%. Under these results, it is clear that the 
proposed model allows having excellent predictions about the number 
of infected members. 

5. Conclusions 

In this paper, we propose a novel agent-based system to model the 
transmission risk of the COVID-19 in facilities. In its model, the system 
involves two important elements. First, the model characterizes the 
behavior of the transmission process through the interactions among the 
individuals within the facility. Second, the model considers the possi-
bility of external contagion, which allows associating the contagion 
dynamic of the locality (city, state, country) with the behavior of the 
transmission process inside the facility (school, office, factory). The 
proposed model is capable of simulating the transmission process 
through the interaction among individuals based on five rules: infection, 
mobility, external infection, incubation-quarantine-recovery, and fatal-
ity. Such rules define the essential behavior of people within the work 
environment considering their personal decisions and individual health 
conditions. The proposed model has been developed to compare alter-
native hypothetical re-opening policies. 

In the evaluation, the model has been tested under different contexts. 
The scenarios involve the effect of the regularity in the disinfection of 
surfaces and objects, the determination of the maximal capacity of in-
dividuals in a facility for maintaining a low risk, the evaluation of the 
effectivity in following correct prevention practices, and the restriction 
effect of the mobility among the individuals inside the facility. 

From the obtained results, we can conclude that the proposed model 
provides important information, which is convenient for designing 
strategies that allow a safe return to economic activities. This model can 
be included for assistance in the decision-making process since it has the 
flexibility and scalability to be applied in different scenarios. Further-
more, the setting parameters can be configured according to the specific 
needs and characteristics of a certain region or environment. With the 
evaluation of re-opening policies, the proposed model allows saving 
important time and resources, considering only those options which, 
according to the simulations, deliver the highest benefit. 

There are several research directions that deserve future work. From 
them, the use of nature-based algorithms to select optimal conditions for 
a re-opening policy is the most remarkable. Under the current context, 
there is not enough information to evaluate the effects and the condi-
tions of a re-opening strategy for a determined company or organization 
on the risk of disease transmission. Therefore, a nature-based approach 
can be used to find the conditions (solution) that provoke the minimal 
transmission risk for a simulated re-opening policy. With the use of 
nature-based methods, it is possible to know the best re-opening strategy 
from all possible conditions under the simulation of their effects. 
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