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Abstract: The prediction of vessel maritime navigation has become an exciting topic in the last years,
especially considering economics, commercial exchange, and security. In addition, vessel monitoring
requires better systems and techniques that help enterprises and governments to protect their interests.
Specifically, the prediction of vessel movements is essential for safety and tracking. However, the
applications of prediction techniques have a high cost related to computational efficiency and low
resource saving. This article presents a sample method to select historical data on vessel-specific
routes to optimize the computational performance of the prediction of vessel positions and route
estimation in real-time. These historical navigation data can help to estimate a complete path and
perform vessel position predictions through time. This Select Best AIS Data in Prediction Vessel
Movements and Route Estimation (PreMovEst) method works in a Vessel Traffic Service database
to save computational resources when predictions or route estimations are executed. This article
discusses AIS data and the artificial neural network. This work aims to present a prediction model
that correctly predicts the physical movement in the route. It supports path planning for the Vessel
Traffic Service. After testing the method, the results obtained for route estimation have a precision of
76.15%, and those for vessel position predictions through time have an accuracy of 81.043%.

Keywords: select AIS data; route estimation; neural networks

1. Introduction

Maritime navigation is an essential part of international trade. Global maritime ex-
change increased exponentially in 2017 [1], mainly driven by Asia and Europe’s economies
since many countries export products around the world in large volumes. At the begin-
ning of 2018, the merchant fleet was estimated to be 58,329 vessels [1], which led to more
commercial exchange. It has also led to the amount of maritime traffic increasing, thus it
is necessary to analyze the information to improve the monitoring processes for different
purposes. Naval navigation has experienced a boom. One main task is monitoring the
seas to describe and predict moving through them, and, since e-commerce is growing
exponentially, vessels are the primary mode of transport for products. Today, governments
and enterprises are more interested in it. Data mining techniques (e.g., [2]) aim to discover
patterns of movement of the ships from the delimitation of an area.

Statistical analysis and clustering techniques are used. The principles of vessels with
similar properties and association rules are used to analyze the movement of the ships
and have been implemented to improve the maritime description such as classification,
clustering, and predictions [3]. Moreover, where transit routes have been established for
navigation, the knowledge of vessel positioning’s historical data allows for the predictive
analysis. There are different ways to interpret the information generated, for maritime
traffic, density, route estimation, and arrival times.
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Likewise, to find vessel movements and prevent incidents, techniques such as mar-
itime tracking and vessel monitoring systems have been proposed. For the latter, in 2002,
the International Maritime Organization (IMO) approved the Automatic Identification
System (AIS), which has now become an indispensable tool in terms of safety and vessel
monitoring around the world.

The vessel industry is volatile, and so commerce and the carriers collaborate and
cooperate in alliances. The industry is characterized by having very different freight rates
depending on the direction of the trip. Several carriers should deliver the products in
several journeys based on the origin country and destination. In 2020, with the COVID-19
pandemic, the number of vessels carrying goods to satisfy client demand has been growing
alot.

The origin and destination of vessels imply costs related to the physical routes;
however, the costs should be reduced by selecting the optimal routes.

Besides, to ensure driver adherence to routes and other requirements for the vessel,
there should always be a degree of maneuverability in cases that the real time ocean
conditions cause changes to origins, destinations, and physical routes.

A vessel can use specific routes many times based on its origin and destination
concerning historical vessel positions. Sometimes ships have to change course for different
reasons such as adverse climatic agents, political disputes, or prohibitions; however, their
trajectories are similar.

Vessel traffic services save historical records to have evidence of the vessel’s location.
Industries such as marine traffic, whose system manages large amounts of navigational
information for nearly 800 million position records per month, are an example of this.

We define route as the vessel trajectory from the departure port to the arrival port.
The position is one set of the coordinates in time of the vessel. The series of positions is all
trajectory points of one vessel. Speed is the vessel’s velocity. Course means the direction of
the vessel’s grades.

One of the principal goals is the prediction and route estimation of vessel movements.
It is a difficult task, however, because systems require high-performance computing. In
addition, it requires historical information that can describe patterns in the flow of vessels.

The inferential statistic has generated a significant number of tools to contribute to
making scientific judgments on the uncertainty data. Besides, localization measures are
designed to provide quantitative values of the central location of the sample. These values
will be helpful to identify differences between several of the vessel’s routes. This paper
proposes an approach to data selection to reduce computational cost. This work does not
focus on precision, but it shows a precision of 76.15% and an accuracy of 81.043% for vessel
position predictions through time.

The paper is organized as follows. Section 2 shows a brief description of the related
works. Section 3 describes the PreMovEst method for selecting the best AIS data in
predicting vessel movements. Section 4 presents preliminary experiments to show the
data behavior and adjust the data before selection. Section 5 describes the operations of
selecting routes by clustering using the best statistical values. Section 6 presents the results
of the experiments. Section 7 summarizes the conclusions drawn from this work.

2. Related Works

The prediction field of vessel trajectory covers different concepts: direction, speed,
registered locations, and statistical analysis to identify routes. One of the most critical topics
is the way to analyze data to identify patterns. Pallotta et al. [4] proposed a framework with
a progressive learning approach and without supervision to extract maritime movement
patterns. Using DBSCAN removes outliers that may be location points for other routes.
It is a basis for automatically detecting anomalies and projecting current trajectories and
patterns into the future.

Perera et al. [5] provided an Extended Kalman Filter (EKF) for the estimation of vessel
states and used it for the prediction of vessel trajectories to integrate intelligent features
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into Vessel Traffic Monitoring and Information Systems (VIMISs); however, the method
has high computational complexity for the data selection procedures.

Zissis et al. [6] proposed a simple prediction system using a multilayer function for
a web-based system capable of real-time learning and accurately predicting any vessel’s
future behavior in low computational time. The selection of the historical AIS data is only
related to obtaining the current data. To predict the next location in the future, it uses
variables such as direction, course, latitude, longitude, and speed.

Mazzarella et al. [7] proposed a system for the detection and monitoring of multiple
vessels. They also showed a proposal for estimating and predicting the navigation trajectory
where the historical AIS selection is based on the similarity of the routes around the
positions through the clustering technique. The authors used a Bayesian vessel prediction
algorithm based on a Particle Filter (PF) to enhance the vessel position prediction quality.

Other works focus on predicting the next position of the vessel based on their neigh-
borhood points and using recursively historical AIS data [8]. Vanneschi et al. [9] predicted
the future position of a vessel through a genetic algorithm, and the construction of the
dataset is done through the historical information of the same route to be processed. In
all cases, the first step is data selection. Zhang et al. [10] selected the dataset based on
the destination of the historical path. The most significant similarity to the travel path is
predicted as the ship’s destination in the forest model. The essential part of measuring
two trajectories’ similarity is the spatial measurement of the historical route (latitude and
longitude) for practical applications. DBSCAN is used to find the spatial similarity.

The principal goal to obtain better results in the prediction vessel movements, inde-
pendent of prediction techniques, is the selection of the correct historical information. For
example, Liu considered AIS record’s similarity from the point of origin to the point of
arrival and used vector support machines to predict ships’ movements.

Liu [11] used different techniques from Wang et al. [12], who considered a recurring
neural network based on two-way recurring gate units. In this work, we use a recurrent
neural network based on long short-term memory.

Dobrkovic et al. [13] considered short- and long-term forecasting approaches. The
problem is to estimate the arrival times of ships, and they concluded that improvements are
need in the quality of the data, the volume of the data, and the mining of these distributed
data, as the precision of arrival time estimates, movement predictions, and route estimates
depend on these issues. It is necessary to mention that the AIS historical data quality is
sometimes not adequate, as mentioned by Dobrkovic et al. A process is needed to improve
the quality of the datasets for use in route predictions. It highlights that the non-generalized
segments in the routes are considered as trajectory outliers. These are irregular movements
of the vessels when they evade barriers, collisions, and erratic traffic. Once the anomaly is
determined, the authors proposed to remove it and reconstruct the segment to standardize
the data [14].

Alizadeh et al. [15] proposed a vessel trajectory prediction to avoid a collision that
reduced the error by 40.85% using neural networks with LSTM. The selection of the
historical routes” data is made considering only with those that show historical movements
and are filtered based on the MMSI. Besides, a filter made on the historical data’s similarity
based on the current route is predicted. Data selection can be improved to estimate vessel
movements, even maritime traffic.

Ramin et al. [16] proposed a procedure based on predicting maritime traffic density
using different time series models. They considered selecting the historical AIS data and
the temporary labeling of the data for four distinct seasons in the year.

Young [17] estimated the future vessel location , which was tested with the validation
of experts. The prediction is done independently for latitude and longitude with neural
networks. The data selection is through the area of interest, defining the minimum and
maximum latitudes and longitudes. Its MMSI differentiates this block of data for each
route. The port makes the selection of the routes of departure and arrival. Similar routes
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used for prediction are selected with a clustering process to locate the similar routes using
the Partition Around the Medoids (PAM) algorithm.

Filipiak et al. [18] developed a system that detects predefined maritime anomalies
to support the maritime surveillance system for tanker vessels and specifies the difficulty
of analyzing large volumes of data. The filter targets vessels on a large volume of data
containing historical and erroneous information. The trajectory is considered an anomaly
in the study of circular movements over an area detected by changes in angle and speed.

Xin et al. [19] and Daranda et al. [20] proposed the generation of navigation simu-
lations on a route using statistical analysis. The historical AIS selection is based on only
the vessels that travel the route from start to finish and discards those ships that have no
similarity in the trajectory. The method highlights using statistical analysis to identify the
similarity of the routes that can simulate the trajectory.

Alessandrini et al. [21] built a model that estimates a vessel’s time to arrive in a port.
It highlights the AIS historical data selection based on the routes with similarities to the
starting location and the destination location related to the arrival time.

Finally, Gao and Shi [22] proposed a model to predict the ships” movements by
identifying patterns in the AIS historical data. It highlights the selection of routes by similar
patterns using clustering analysis and statistical classification by samples or indicators in
three different ways: using the complete routes, using segments of the routes, and using
each of the routes’ positions. They are highlighting as the best options for the segmentation
of the routes for later selection by clustering.

3. PreMovEst Method for Select Best AIS Data in Prediction Vessel Movements

The PreMovEst method consists of four components, which are divided into two
stages: training and discovering. For the first stage, there are three components: (i) GetAIS
data; (ii) historical data collection; and (iii) the selection process of the best-routes collection.
For the prediction and route estimation, there is one component: (iv) the process of finding
and predicting the position of the vessel movements. We describe each of these steps in the
following.

Supervised learning is used to build the knowledge base. It has information linked to
the sample containing almost 158,274 records for training using Artificial Neural Networks
(ANN). For the application of Multivariate Imputation by Chained Equations (MICE),
all records were used, including records of the actual vessel target. In addition, both
techniques were used to discover the longitude and latitude in the maritime area [23].

The implementation used Flask and the prediction model used Keras framework, both
in Python.

The process of establishing a knowledge base is essential for training. It consists of
three stages: (a) obtain the GetAlIS data for vessels; (b) obtain the historical data collection;
and (c) obtain the best routes collection through a Chi-squared selection process.

i GetAIS data. Our first assumption is as follows. For the development of this work, the
datasets were obtained from MarineCadastre [24] in Zones 15 and 16 in the maritime
area with 30 GB volume.

ii ~ Obtain historical data collection. The method involves accessing MarineCadas-
tre [24] and selecting the year and data segment to download the metadata and
their content. The resulting instances are in simplified Dublin Core format. For each
obtained instance, a transformation of the Dublin Core format to text file is performed.
Historical AIS data can be obtained in different ways. Our process obtains the data
through a polygon calculated by departure and destination points, on which our
method can be built. After the maritime area is filtered, different AIS data are in-
cluded. This considerable amount of data can be reduced using a diverse time range
in one-month intervals or more. In this way;, it is essential to preserve the behavior of
our target. If the method considered all AIS data in the maritime area, it could break
the general behavior seen in other data.
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iii ~The best-routes collection through statistical behavior selection process. The method
finds values with a higher weight of the mean absolute deviation to be used for clas-
sification. They match the statistical target route to detect the best routes. It is not
strict because it allows having information about routes with different performance
levels and precision. Indices such as precision and recall also give a good measure
of performance. Precision refers to the dispersion of the set of values obtained from
repeated measurements of a magnitude. The smaller is the dispersion, the greater is
the accuracy. Precision is calculated with (1)

. . tp
Precision = ——— ey
tp+fr
Recall is the number of true positives (tp) divided by adding the number of true
positives and the number of false positives (fp). True positives are data points classified
as positive by the model (meaning they are correct) and false negatives are data points
that the model identifies as negative that are positive (incorrect) (2).

Recall = _r_ @)
tp+ fn

This technique allows selecting those characteristics of mean absolute deviation, mean,
median, and standard deviation dependent on each other, based on an expected value
in the target path that has the absolute values of the prediction of the complete path.
This can limit the current use case method since it does not know which is the expected
case for each route. The process has to find suitable routes without a sustainable basis
of classification or a predefined example.

iv. The process of finding and predicting the position of the vessel movements. Two
techniques for prediction are proposed in this paper to show the accuracy of the posi-
tion of vessel movements prediction for route estimation after selecting all routes that
resemble the current one. The first is the use of an Artificial Recurrent Neural Network
(ARNN) [25] with Long Short-Term Memory (LSTM) [26,27] using historical data as
continual input streams. The second technique employs Multivariate Imputation by
Chained Equations (MICE), a statistical method for handling missing data [28].

The network is made up of three layers, with 64 neurons in the input layer, 32 in the
intermediate layer, and two neurons for the output layer. The ANN application is based on
time-series forecasting, and it is auto-regressive to forecast multiple steps.

MICE offers a significant advantage over other missing data techniques in terms of
its flexibility. However, a primary disadvantage is that MICE does not have the same
theoretical justification as different imputation approaches. In particular, fitting a series of
conditional distributions is done using a series of regression models that are not consistent
with proper joint distribution. The purpose of using MICE is to generate the route and an
approximation concerning the full path’s prediction based on it.

4. Data Analysis and Preliminary Experiments

The vessel prediction accuracy depends extensively on the existent information’s
behavior, what the process obtains, and the appropriate selection of data. Historical AIS
data can be obtained in different ways; our process obtains the data through a polygon
calculated by the departure and destination points. The data are used to design a polygon,
but this can include different AIS data. After filtering the maritime area, a considerable
amount of data can be reduced by using a diverse time range, such as one month. In this
way, it is crucial to preserve the behavior of our target. If all AIS data are considered in the
maritime area, then it could break the general behavior from a different route.
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4.1. Statistic Analysis

To understand how the method works, we use AIS data of a specific maritime area.
Figure 1 shows some routes, one incomplete from a specific target, which helps to deploy
our method.

Figure 1. Routes in the selected area with different historical ways. The actual vessel location is at
the center.

The GetAIS data process consists of two stages: (a) statistic analysis; and (b) data
adjustment. Figure 2 shows several data that exist for our specific target route.

Thunder
Bay

Duluth

Marquette

Figure 2. The actual route for a specific target-destination is marked with X.

An analysis of each route’s behavior was undertaken using this method to select
the correct data. One drawback is the number of samples that a vessel can record on a
whole journey. To understand what is happening in this process, we can describe the
statistical analysis identifying central tendency and dispersion measures. Our method uses
the Freedman-Diaconis rule to obtain a minimal difference between the area under the
empirical probability distribution and the area under the theoretical probability distribution.
It will help the method to know the behavior of data, so we can see a gap that can
significantly differentiate the routes. The second step is to find visual differences among
each route using a histogram and Kernel Density Estimation (KDE). If the KDE or the
histogram follows a similar pattern for each route, the data behave similarly. However,
that does not occur in real environments.
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4.2. Data Adjustment

The graph of the histogram with its probability density curve is in two perspectives.
The first uses the calculation of bins through the square root of the amount of data. The
second is by using the Freedman—-Diaconis rule, as shown in Figures 3 and 4. The last
graph is a quantile-quantile one to verify the non-normality of the distribution. Figures 3
and 4 show the sample’s behavior around its histogram and its KDE.
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Figure 3. The Kernel Density Estimation (KDE) and histograms for each sample route (one and two) to visualize the
differences. Freedman-Diaconis rule was used to calculate bins.
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Figure 4. Route 3 and 4 Kernel Density Estimation (KDE) and histograms for each sample route to visualize the differences.

Freedman-Diaconis rule is used as a complement of Figure 3.

Some route data change in latitude or longitude, depending on the destination, starting
point, or route. The rest of the data are very similar in latitude and longitude. The data are
different in the number of observations, or they have small deviations in the routes. At
the same time, the historical data contain complete routes. The previous cases (the feature)
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affect the search and selection of statistical values that serve as discriminant properties to
select the appropriate routes that are the basis for predicting and estimating routes.

The first step is to cut the data between the origin and the last actual position values
for each route to adjust the sample route to the objective route.

In the target route, the method approximates all AIS data’s statistical behavior to our
target and discards those routes with different behavior because some statistical values can
perform as outliers, as shown in Figure 5. The data in the red section are discarded. This
step helps approximate the historical data to the current route in statistical terms. Some
routes have a different direction, and similar cases help to perform the selection of routes
in the next step.

Last position of vessel
target

Figure 5. The data in the red section are discarded.

Once the data have been filtered, the method computes the statistical values of each
route. All sets of the route with a behavior similar to the target route will maintain a
similar statistical behavior despite the lack of information and regardless of the number
of observations. This stability is what allows the method to select the most appropriate
datasets. It is possible to find statistical values that have a higher weight for classification
to detect the best routes that statistically match our route with the Chi-squared selection
method. In this case, the method wants to find values with minor and significant statistical
differences. The statistics with less dispersion and those with much more dispersion are
kept, as shown in Table 1.

The statistical metrics calculated for the vessel position’s target routes (longitude and
latitude) are as follows:

The mean is obtained from the tracking of each route. A central descriptive value is ob-
tained from the distribution of the routes. The main disadvantage is the mean is susceptible
to outliers’ influence, a property that the method can use as a discriminant feature.

Standard deviation measures the dispersion around the mean. It is highly influenced
by the mean and allows the identification of outliers. This property is used to select the
closest routes to the route that will generate the prediction.

The median is selected because outliers do not influence it. In addition, it provides an
approximate location of the center point to the distribution when it is not normal to the
target path distribution.

The trimmed mean is less sensitive to outliers. It allows discarding them and uses the
distribution data to get closer to the target route.
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MAD is less sensitive to outliers. It is an important variable to relate the routes that
are statistically similar to the target route.

The range is susceptible to outliers. This property allows discriminating those routes
that have large deviations outside the target route.

Skew identifies the degree of distortion of the distribution and is a characteristic most
used as a discriminant.

Kurtosis is a statistical measure to discriminate by focusing on the tails of the distri-
bution. It identifies outliers and routes that have deviations.

Standard Error of Mean (SE) rates the uncertainty in estimating the mean of the target
route data compared to the other historical routes.

Table 1. All statistic values are computed for latitude and longitude, and Route 25 is our route-target.

Routes Lat Lat LAT Lat Lat Lat_Range Lat Lat Lat Lon Lon Lon Lon Lon Lon Lon Lon Lon
Mean SD Median Trimmed Mad Range Skew Kurtosis  SE Mean SD Median Trimmed MAD Range Skew Kurtosis SE
Route 1 467452 0.3696 46.7206  46.743 0.4275 1.327 0.1046 —1.2337  0.0129 —85.1877 0.9905 —84.8746 —85.1019  1.0152 3.2322 —0.5702 —1.0605 0.0344
Route2  46.749 0.381.043  46.7056  46.7455 0.4358 1.3547 0.1278 —1.2377  0.0124 —85.1737 0.9745  —84.8458 —85.083 0.9356 3.2322 —0.6222 —0.9958 0.0318
Route3  46.5089  0.0065 46.5124  46.5094 0.0045 0.0261 —0.4288 ~13778  1x10~% 843757 00169 —84.3752 —84.3761  0.0046 0.0923 0.1608 0.505 3x 1074
Route4 464435 0.1133 46.5032 46472 0 0.4378 —1.8631 2.2455 0.0034 —84.281.04 0.0884 —84.327 —84.3008 0 0.3288 1.8142 2.0484 0.0026
Route5  46.81.04 0.3481 46.8522  46.8065 0.4748 1.3192 —0.181.04 —1.1227  0.01 —85.3 0.9396 —85.1586 —85.2475  1.2006 3.2307 —0.347 —1.1476 0.0271
Route 6 464254  0.1256 46.5032  46.4515 0 0.4374 —1.3948 0.538 0.0026 —84.2643  0.0986 —84.327 —84.2837 0 0.3308 1.3205 0.3028 0.0021
Route7  46.4837  0.0687 465019 46.5019 1x107% 04375 411810 166474 7x107% 843801  0.0729 —84.4039 —84.4015 6x 104 04035 3.4549 11.5551 7x 1074
Route8  46.8939  0.481 46.8786  46.8844 0.5943 1.6987 0.1644 —1.2434  0.0158 —85.2611 09821 —85.019 —85.1914  1.1128 3.2296 —0.4605 —1.1327 0.0322
Route9 467512  0.4232 46.5945  46.7296 0.4633 1.8348 0.461 —0.781 0.011 —84.981 0.8673 —84.73 —84.86 0.7228 3.2326 —1.0074 —0.0512 0.0225
Route 10  46.778  0.406 46.814  46.7739 0.506 1.4311 0.0993 -13 0.0138 —85.2306  1.0034 —84.9672 —85.1504  1.1148 3.2241 —0.4968 —1.181.0433  0.0342
Route 11 46.9246  0.5221 46.8466  46.9244 0.6756 1.6368 0.0926 16175  0.0159 —85.1424  0.9692 —84.881.04 —85.0452 0.9362 3.2351 —0.6855 —0.8772 0.0296
Route 12 46.7635  0.4111 46.5712  46.747 0.432 1.5004 0.3806 —1.1157  0.0123 —85.1127 09484  —84.6995 —85.0081  0.7191 3.2364 —0.7724 —0.781.04 0.0285
Route 13 46.4907  0.0569 465041  46.5041 0 0.4487 ~50681.04 264159 4 x 1074 84317 0.0461  —84.3269 —84.3269 0 0.3994 4.5031 222307 3x 1074
Route 15 46.6236  0.2495 46.6185  46.6358 0.2827 0.9644 —0.3162 —0.9331  0.0083 —85.1146 09591 —84.7612 —85.0126  0.8102 3.2341 —0.7423 —0.8197 0.0318
Route 16  47.2569  0.0731 47.2576  47.2571 0.0937 0.2516 —0.0208 —1.2184  0.0055 —86.7552  0.2824  —86.7573 —86.756  0.3608 0.9716 0.0199 -1.2192 0.0212
Route 17 46.5689  0.1847 46.5801  46.5864 0.1882 0.7522 —0.6377 —0.219 0.0058 —85.257 1.0155 —84.9607  —85.1848 1.1244 3.2318 —04296  —1.265 0.0318
Route 18 465039 0 465039 465039 0 6x107% 03426 21018 0 —84.327 0 —84.327 —84.327 0 4x107%  —06251  1.6465 0
Route21  46.7151  0.3522 46.5295  46.7047 0.3831 1.3261 0.3276 —1.0741  0.0116 —85.0743  0.9629 —84.6554  —84.9644 0.7026 3.2318 —0.81.043 —0.7722 0.0316
Route22 46.8493  0.5226 467481  46.8032 0.4595 21414 0.8019 0.1072 0.0155 —84.9308  0.7366 —84.8472 —84.8397  0.7367 3.2328 —12027  1.4906 0.0218
Route23  46.7484  0.3686 467232 46.7462 0.4231 1.3252 0.1032 —-1.2429  0.0129 —85.1956 09924 —84.8829 —85.1105  1.0158 3.232 —05567  —1.0834 0.0346
Route24 46.5917  0.1751 46.6034  46.6097 0.1627 0.7872 —0.8153 0.4608 0.0048 —85.0913  0.8171 —84.9781 —84.985  0.7554 3.2322 —1.0473  0.3076 0.0225
Route25 46.7896  0.3441 46.8456  46.81.04 04713 1.2992 —0.1852 —-11293  0.01 —85.2761 0.9208  —85.1329 —85.2259  1.1676 3.1519 —0.3408 —1.163 0.0267

The selection operation is not strict because the routes can have a statistical similarity
from the point of origin to the set point. The consequence is selecting routes with different
weights for training and influencing the precision of the method.

Of the previous variables, MAD is one of the most stable variables depending on its
nature, regardless of the number of observations, as shown in Figure 6.

Therefore, it is the variable that determines the selection of significant routes. The
range is quite sensitive to the characteristics of the dataset because it is altered significantly
by the existence of outliers.

As mentioned above, Table 1 shows the statistical values of each route as features. The
data have a marked difference in most of the statistical values, specifically those related
to latitude. The method applies the cluster technique to those statistical values to help us
choose the best prediction routes. The cluster is on densities. The dense region of objects
contains a target path and similar paths. The low-density section is those routes with a
statistical difference.
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Figure 6. A three-dimensional perspective of three features of the routes, two of which are MAD.

5. Experiments

This section uses input data analysis and the selection of those statistical values that
represent the best way for each route. A clustering technique was used and the data were
selected to predict the route.

The process of finding and predicting the position of the vessel movements consists of
three stages: (a) route selection by clustering; (b) using an artificial neural network; and (c)
using multivariate imputation by chained equations.

5.1. Route Selection by Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [29] was
applied to discover and select the best data. DBSCAN was proposed by Albert Ester and
can identify clusters and outliers. A clear difference before the application of DBSCAN is
found in the sample.

The first step is to cut the 146 data (for each route) between the origin and the last
actual position values (147 longitudes and latitudes approximately) of the target route to
adjust the sample routes to the objective route.

The route selection helps approximate all 148 AIS data’s statistical behavior to the target
and discards those routes with different behavior. Some of the 149 statistical values are
outliers, as shown in Figure 7.
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Figure 7. The actual and predicted routes.
The configuration parameters of DBSCAN are related to the minimum distance found

at each point, and the minimum elements of clusters are defined by 3. The method applies
DBSCAN to see several groups within its routes, as shown in Figure 8.
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Figure 8. Cluster discovered using DBSCAN. Those routes in the group (tagged as Similar) have a
similarity in statistical properties and help predict and estimate the route-target.

After applying DBSCAN, the method discards all routes that do not resemble the
route to predict. For better results, it is necessary to have enough data to get an accurate
approximation of its best statistical values to achieve the classification’s performance
according to the theorem of limit central [30]. The algorithm chooses the information that
justifies the use of specific routes that share similarities with the target.

The method’s comparison is with the methodological approach for extraction of the
characteristics of biological signals [31], which uses the histogram class marks to make the
selection of characteristics using the behavior of the distribution of biological signals.
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The classmark allows a representative point of each histogram interval to be obtained
and then a frequency polygon to be created. A frequency polygon is built with a dynamic
prototype and biological signals to get a graphic form to represent the original data.

Table 2 shows the comparative results of route selection for each method, which are
almost all similar. The differences are in the features. PreMovEst can use a small number
of features to select routes. In contrast, the methodological approach for the extraction of
biological signals” characteristics needs all features, multiplying the number of latitude and
longitude features.

Table 2. The results of route selection for all methods are similar.

Clustering after Clustering after

Using PreMovTest Using Granados-Ruiz 2019 Route

1 1 Route 1
1 1 Route 2
0 0 Route 3
0 0 Route 4
1 1 Route 5
0 0 Route 6
0 0 Route 7
1 0 Route 8
1 0 Route 9
1 1 Route 10
1 0 Route 11
1 0 Route 12
0 0 Route 13
1 0 Route 15
0 0 Route 16
0 0 Route 17
0 0 Route 18
1 1 Route 21
0 0 Route 22
1 1 Route 23
0 0 Route 24
1 1 Route 25

For prediction and route estimation, the selection of all routes that resemble the current
route was made. First, an Artificial Recurrent Neural Network (ARNN) with Long Short-
Term Memory (LSTM) was used with historical data as continual input streams. As the
second technique, multivariate imputation by chained equations used a statistical method
for handling missing data.

The sample contains almost 158,274 records for training in the case of an Artificial
Neural Network (ANN). For the application of MICE, all records were used, including
records of the actual vessel target.

In addition, for both techniques, only longitude and latitude were used to save
computational power.

5.2. Using an Artificial Neural Network

The type of ANN used before was an ARNN with a Long Short-Term Memory layer
using Keras high-level framework [32].

First, some variables were defined: the network is made up of three layers, with
64 neurons in the input layer, 32 in the intermediate layer, and two neurons for the output
layer, as shown in Figure 9.
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The method learns through an adaptive prediction model and automatically deter-
mines when the next position on a vessel’s route occurs. A knowledge base was generated
with all routes of the target vessel to achieve this goal. The first part of the data was used
to create a model to predict the routes. Besides, the filtered historical data were used to
train, validate, and test the neural network model to predict the current route.

5.3. Using Multivariate Imputation by Chained Equations

MICE is widely used to search for missing dataset values to get the best cases about
data behavior [33].

For the full application of this technique, it was necessary to carry out a stratified
sampling. The algorithm obtains a representative matrix of the data to get the most
important information that contributes to generating the estimation route.

6. Results

The purpose was to show that, after obtaining the journey knowledge base, our
method helps in the selection of the routes based on the statistical behavior of each one.
ANN achieved the prediction of an interval of time and the estimation of the route using
the MICE Algorithm. The PreMovEst method obtained the following results: Table 3 shows
a contrast between the actual data of an interval of time and the ANN'’s vessel movement
predictions.

Table 3 presents ten positions of Route 25 of Segments 15 and 16. The results show
an accuracy of 80.5% in the prediction. However, if the method does not have enough
information about the route to be estimated or it is too short, it loses precision. That is why
we combine the two processes: prediction using neural networks and route estimation
with MICE. Besides, where there is not enough information, it is necessary to obtain more
historical data, which increases the processing time that depends on the amount of AIS.
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Table 3. Real data versus the predicted path segment. The predicted latitude has better accuracy
than the predicted longitude.

Original Latitude Predicted Latitude Original Longitude Predicted Longitude

47.36767 47.88345 —87.16083 —86.99632
47.36887 47.99324 —87.16616 —86.54012
47.37018 48.01275 —87.17136 —86.62076
47.3715 48.02375 —87.17667 —86.56543
47.37282 48.11034 —87.18205 —87.18984
47.37396 48.11498 —87.1872 —87.22098
47.37532 48.12876 —87.19258 —87.35465
47.37667 48.12076 —87.19767 —87.65703
47.378 48.13776 —87.203 —87.98583
47.381.04333 48.22021 —87.20817 —87.99232

The amount of information used in the second example was more than in the first one.
That allowed the accuracy to be better, at 84%. The historical AIS data samples are similar
from the block to be estimated, out of 10 predictions. The absolute mean difference for
latitude is 0.0015655 degrees, while the absolute mean difference for longitude is 0.00211949
degrees, as shown in Table 4.

Table 4. Real data contrasted with the previously predicted path segment on the second sample.

Original Latitude Predicted Latitude Original Longitude Predicted Longitude

47.36767 47.88345 —87.16083 —86.99632
47.36887 47.99324 —87.16616 —86.54012
47.37018 48.01275 —87.17136 —86.62076
47.3715 48.02375 —87.17667 —86.56543
47.37282 48.11034 —87.18205 —87.18984
47.37396 48.11498 —87.1872 —87.22098
47.37532 48.12876 —87.19258 —87.35465
47.37667 48.12076 —87.19767 —87.65703
47.378 48.13776 —87.203 —87.98583
47.381.04333 48.22021 —87.20817 —87.99232

Concerning the MICE technique’s application, as shown in Figure 10, the predic-
tion generates the route approximation with 76.15% accuracy, using a small sample of
routes. Finally, the prediction obtained an accuracy of 81.043%. However, it allows for
approximating the results with the ten routes as the sample.

The PreMovEst method shows that the prediction is almost the same as the real one
after selecting the best routes.

The best routes (series of positions) have a similarity in statistical properties after the
clustering process.

The routes’ selection through their statistical data in the clustering allows discriminat-
ing those routes whose navigation course differs from the current route predicted. That is
why they work as outliers, which is evident when clustering carried out, as they remain
outside the cluster to which the route to be estimated belongs.

Figure 10 compares the PreMovEst method to the Zissis method that considers a cloud
infrastructure to support marine traffic. Furthermore, their system stores the trained vessel
and recalls it 24 h as input for the following predictions. Our method uses data in real-time
and is capable of running on a computer with GPU. Computing power is demanded,
depending on the application. Our method contributes to the search for processes that
allow computational savings. It is understood that a dataset can be better known if it has
the largest number of characteristics.
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Figure 10. The route prediction results with MICE.

In the second example (see Figure 11), the method used more historical AIS data
samples, i.e., 28% more than the first example. There is more information to predict the
next movements of the route. In addition, the complete route was estimated. In this
example, the historical samples are quite similar to the target route. It is also favorable
because the route block to be estimated is smaller than in the previous example.

A segment of the original route with no information was observed. It occurred for
technical reasons and was compensated by the historical information extracted in the
selection process; however, our objective is not to recover missing data, which can lead to
missing historical information. Thus, the neural network’s prediction process would be
more uncertain when there are missing data in the segment to be estimated.

Figure 11. The route prediction results with MICE.

7. Conclusions

The present proposal, called Method for Select Best AIS Data in Prediction Vessel
Movements and Route Estimation (PreMovEst), is related to obtaining reports on vessels’
status that allows for accurate and real-time monitoring.

It applies to all vessels navigating within a designated maritime area and predicting
future positions of a vessel based on positions already traveled within the designated
maritime area. The information is shown to the user through general and specific vessel
status reports.
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The PreMovEst method was tested using a small dataset. However, the correct
selection of data for analysis and prediction in maritime routes is essential before applying
the method.

The PreMovEst method uses a filter for the routes whose behavior are similar to obtain
the best routes collection through a Chi-squared selection process. The execution time was
reduced from 16 to 11 min on average. The experiments were run on a Core i7 processor
with 16 GB of RAM .

The results show a prediction accuracy of 80.5-84%. The amount of information used
in the second example was more than the first example, which allowed the accuracy to be
better, at 84%. The historical AIS data samples are similar to the block to be estimated, out
of 10 predictions. The absolute mean difference for latitude is 0.0015655 degrees, while the
absolute mean difference for longitude is 0.00211949 degrees.

The results concern the assets of the vessels that move in the seas, especially in
economic terms. The paper shows the PreMovEst method’s application and testing of its
accuracy using ARNN and MICE techniques. Everyday, vessels move billions of items
across the oceans from one country to another, a drawback of which is handling all of this
information. The process of selecting data to train the neural network is a function of the
number of trips made by the vessel from the port of departure to the arrival port.

One of the challenges to be undertaken is to obtain better accuracy while reducing the
execution time.

Future work will be to accelerate the prediction model with Graphical Process Units
(GPU). This requires image processing, which implies supercomputers to process such data,
limiting its effectiveness for real-time monitoring of vessels navigating within a designated
maritime area and increasing the amount of processed information.
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