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A B S T R A C T

We calculate equations to obtain the exact and third-order design of thick lenses free from
spherical and coma aberrations at two points, at the edge and center of the lens, considering the
shape factor and the conic constants. We obtained analytical expressions based on the equality
of the optical path and the Abbe sine condition calculated for an object located in infinite and
finite positions. Examples developed with this method show an alternative way of designing
diffraction-limited thick lenses that are equal or better than results obtained when the conic
constants are optimized using commercial optical design software. As the shape of the lens
changes, the spherical and coma aberrations vary; so, the presented method offers better results
for shape factors ranging from −0.5 to 0.9.

. Introduction

The most used optical systems today are lenses, as they allow the formation of images and have the ability to concentrate light
oming from a lighting source inside and outside the optical axis.

As optical elements, lenses by nature of their surfaces introduce aberrations into the image. If the surfaces are spherical, spherical
berration occurs; however, if the object is at infinity or is finite, outside the optical axis, coma aberration occurs. The field of view
f the lens affects aberrations due to the differences in the optical path length between the marginal and paraxial rays. Therefore,
he properties and applications of lenses have been studied from long ago to the present. Some studies show that these aberrations
educe by different shape factors and the conjugate variable [1–3]. Castro et al. [4] have developed an analytical method that allows
spherical singlet to be modified by another non-spherical curved surface to minimize spherical aberration of infinite and finite

onjugate objects.
In the literature, we find that Jurek [5] developed a numerical evaluation to design an aplanatic lens using a differential equation

nd determine the relationships between the Cartesian coordinates of the meridian plane and the second surface using the equal
ptical path theorem.
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Máximo Avendaño and collaborators [6] presented another all-important aspect of singlets; they studied the formation of the
austic surface produced by conics lenses thick considering a flat wavefront to create sharper diffraction-limited images (to reduce
hird-order spherical aberration). Alternatively, the caustic surface made in a large area can be applied to singlets’ design without
maging, with potential applications such as diffusers for lighting or solar concentrators.

Chaohsien Chen [7] highlighted the importance of studying variations in spherical and coma aberrations in singlets. Some
uthors [8] reveal interest in diffraction lenses. In this case, a singlet diffractive optical element provides the possibility of correcting
planatism. The combination of lenses with spherical surfaces and diffractive optical elements is difficult to construct when the
patial frequency is considerable.

Another essential application concerning the use of singlets is presented by Mingqian Zhang [9]. The proposed work is to design
coherent light collimator using a fiber-optic arrangement consisting mainly of a single collimation lens. The distribution of the

ar-field intensity pattern detected by an infrared camera matches the ideal intensity distribution.
Using the Abbe sine condition for performing optical designs, Masato Shibuya [10] established that spherical aberration can

xist without coma aberration and conventional aberration theory is reliable in the third-order region.
Rafael González et al. [11] presented exact equations to design a stigmatic singlet on the axis, satisfying the Abbe sine condition

or each ray-traced over the entire surface. They solve a nonlinear system to find a function describing the second surface, previously
ixing the first surface as a parabola. The function they find represents a challenge for optical shops in charge of the construction
f refractive optical surfaces.

Mikš and Pokorný [12] developed a theoretical analysis of a rotationally symmetric lens system’s characteristics, with one or
wo aspheric surfaces, to produce a stigmatic system mainly on axis from the Seidel sums. These articles highlight the importance
f solving this problem, which has been addressed for several decades, for example, in the 1980s by Born and Wolf [13] where he
resents a treatment with a system of two differential equations, which maps the points of the aspheric surfaces for the particular
ases when the object or image is at infinity.

Even though optical systems consist of several lenses, an aplanatic singlet designed with two surfaces helps evaluate skin lesions
sing monochromatic light. It allows the extraction of lesion characteristics in a specific spectral analysis; furthermore, it is also
elpful in designing contact and intraocular lenses to analyze wavefront aberration, as Srivastava et al. showed [14].

An important aspect to highlight is that computational tools optimize calculations to perform aberration-free optical systems.
ometimes the third-order design has been used as a starting point to perform up optical designs. Based on the concepts and
heories developed in a previously published article [4]. We propose a singlet design with conic surfaces free of spherical and
oma aberrations by computing aberrations’ correction at two points at the lens’s edge and center. Thus, we showed that only any
wo points on the lens surfaces are sufficient to find a diffraction-limited system. Optical thick lens designs start from third-order,
ubsequently by using exact ray tracing. This method applies to both near and far objects with monochromatic light.

. Reduction of spherical and coma aberrations by using first and third order design

This section describes how any thick lens optical design starts (see Fig. 1). First of all, by calculating the thin lens parameters, the
ocal length of the lens 𝑓 , its inverse refractive power 𝜙 (𝜙 = 1∕𝑓 ), and the image position (𝑑2). In the second place, by computing
arameters such as the distance between the thick lens’s vertex and the object’s position (𝑑0), the radii of curvature (𝑟), the shape
actor (𝐵), the refractive index (𝑛′), and the conjugate factor (𝐶 = −

(

1 + 2𝑓
𝑑0

)

) [4].

2.1. Thin lens

Castro et al. [4] deduced the radii of curvature of the first and second surfaces for a thin lens with minimal spherical aberration.
With an analogous procedure using Seidel sums [15], Welford has shown that the best shape factor must obtain for finding a minimal
coma aberration utilizing the equation:

𝐵 = −
(𝑛′ − 1)(2𝑛′ + 1)

𝑛′ + 1
𝐶. (1)

By substituting the shape factor (𝐵 = (𝑟2+𝑟1)
(𝑟2−𝑟1)

) into Eq. (1), it is possible to find the radius of curvature of the first and second
urfaces for a lens that reduces coma aberration:

𝑟𝑖 =
2𝑓 (𝑛′2 − 1)

(𝑛′ − 1) (2𝑛′ + 1)
(

1 + 2𝑓
𝑑0

)

± (𝑛′ + 1)
, (2)

combining Eqs. (1) and (2), we obtain the curvature radius in terms of the shape factor 𝐵:

𝑟𝑖 =
2𝑓 (𝑛′ − 1)
𝐵 ± 1

, (3)

he positive sign uses when the subscript 𝑖 = 1, and for 𝑖 = 2, we must apply the negative sign of the Eq. (3).
2
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Fig. 1. Design parameters of a singlet in a meridional plane for an inside and outside the optical axis object point (O).

2.2. Thick lens

In reality, in an optical system, lenses have an axial thickness

𝑑1 = 𝑒 + 𝑧1 − 𝑧2, (4)

where 𝑒 is the lens edge thickness. The sagittas (𝑧1, 𝑧2) are functions of the conic constants of the surfaces 𝑘𝑖, the incidence height
of the ray concerning the optical axis 𝑦𝑖, and the vertex of the lens [16].

𝑧𝑖 =
𝑐𝑖𝑦2𝑖

1 +
√

1 − (𝑘𝑖 + 1)𝑐2𝑖 𝑦
2
𝑖

𝑖 = 1, 2. (5)

If at the beginning of the design this considers a spherical surface (𝑘𝑖 = 0), then to obtain real values of Eq. (5) of the sagitta z,
then it requires 1 − 𝑐2𝑖 𝑦

2
𝑖 ≥ 0 must be satisfied. Therefore, the curvature 𝑐𝑖 of the lens must meet the condition given by Eq. (6):

𝑐𝑖 ≤
2𝑓 -number

𝑓
𝑖 = 1, 2. (6)

According to Castro et al. [4], Eq. (7) calculates the curvature radii for a thick lens without changing the original design’s paraxial
focal length.

𝑟𝑖 = (𝑛′ − 1)
𝑓 + [𝑓 2 + (𝑓𝑑1∕𝑛′)(𝐵 + 1)(𝐵 − 1)]1∕2

𝐵 ± 1
, (7)

where the positive sign is used for 𝑖 = 1 and the negative sign for 𝑖 = 2, hence, using the Eq. (5) to (7), we obtain the first-order
parameters necessary to design a thick lens with effective focal length 𝑓 , the axial thickness 𝑑1, and refractive index 𝑛′.

In general, a third-order analysis may be enough to obtain the final optical design of various instruments. This fact achieved by
correcting and eliminating aberrations to improve image quality, by working with the Seidel aberrations, and the conic constants
of aspherical surfaces, as is shown in the next section.

2.3. Optical design to third-order with aspherical surfaces

In this section, the third-order conic constants calculate for any thin lens, thus obtaining a system free of spherical aberration.
It is well known that the total deformation of the wavefront must consist of the contributions introduced by a conic surface of
revolution plus the aberration produced by the spherical reference surface as follows:

𝑆𝐼𝑡𝑜𝑡𝑎𝑙 = 𝑆𝐼𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 + 𝑆𝐼𝑐𝑜𝑛𝑖𝑐 , (8)

where 𝑆𝐼𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 is the first Seidel sum for spherical surfaces [2,15,17] and 𝑆𝐼𝑐𝑜𝑛𝑖𝑐 is the contribution of the conic surface given by
Shannon [17].

𝑆𝐼𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝐾
∑

𝑦𝑖(𝑛𝑖𝑛𝑖+1)2
(

𝑈𝑖+1 − 𝑈𝑖
)2 (𝑈𝑖+1 −

𝑈𝑖
)

, (9a)
3

𝑖=1 𝑛𝑖+1 − 𝑛𝑖 𝑛𝑖+1 𝑛𝑖
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𝑆𝐼𝑐𝑜𝑛𝑖𝑐 = ∓
(

𝑛′ − 1
)

𝑘𝑖𝑐
3
𝑖 𝑦

4
𝑖 , (9b)

here (𝑈𝑖+1, 𝑈𝑖) are the angles formed by the marginal ray path, and the optical axis, (𝑛𝑖+1, 𝑛𝑖) are the refractive indices, 𝑘𝑖 is the
onic constant, and 𝑐𝑖 = 1∕𝑟𝑖 is the curvature. The subscripts 𝑖 = 1, 2 in the Eq. (9b) refer to the first surface (negative sign) and the
econd surface (positive sign), respectively, and 𝑦𝑖 is the height of the marginal ray.

Expanding Eq. (9a) for 𝐾 = 2, where 𝑛𝑖+1𝑈𝑖+1 = 𝑛𝑖𝑈𝑖 + 𝑦𝑖(𝑛𝑖+1 − 𝑛𝑖)∕𝑟𝑖, 𝑦𝑖+1 = 𝑦𝑖 − 𝑑𝑖𝑈𝑖+1, 𝑛1 = 𝑛3 = 1 and 𝑛2 = 𝑛′, we get

𝑆𝐼𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝑦41

𝑛′2(𝑛′ − 1)2

{

(1 −
𝑛′

𝑑0
)2(1 −

𝑛′2

𝑑0
) +

1

𝑛′(𝐵 − 1)3
[

1(𝐵 − 1)(𝑛′ − 1) − (𝐵 + 1)𝜙11
]2

[

1(𝑛′
2 − 1)(𝐵 − 1) − (𝐵 + 1)𝜙1𝑛

′1

]

}

, (10)

where 1 = 𝑛′ − 𝑑11, 1 = 1∕𝑑0 + 𝜙1 and 𝜙1 = (𝑛′ − 1)∕𝑟1. If the object is at infinity (𝑑0 = ∞), 𝑦1 = 1, and the focal length is 1,
Eq. (10) reduces to Mikš’s [18,19] equation for Seidel spherical aberration for a thick lens in air.

Now from Eqs. (8), (9b), and (10), the conic constants 𝑘𝑖 for a minimum contribution of spherical aberration of any thick lens
are calculated by:

𝑘1 =
𝜙−3
1

𝑛′2

{

(1 −
𝑛′

𝑑0
)2(1 −

𝑛′2

𝑑0
) +

1

𝑛′(𝐵 − 1)3
[

1(𝐵 − 1)(𝑛′ − 1)

−(𝐵 + 1)𝜙11
]2
[

1(𝑛′
2 − 1)(𝐵 − 1) − (𝐵 + 1)𝜙1𝑛

′1

]

}

, (11a)

𝑘2 = −
(𝐵 + 1)3𝜙−3

1

𝑛′2(𝐵 − 1)3(1 − 𝑑1
𝑛′ 1)4

{

(1 −
𝑛′

𝑑0
)2(1 −

𝑛′2

𝑑0
)

+
1

𝑛′(𝐵 − 1)3
[

1(𝐵 − 1)(𝑛′ − 1) − (𝐵 + 1)𝜙11
]2

[

1(𝑛′
2 − 1)(𝐵 − 1) − (𝐵 + 1)𝜙1𝑛

′1

]

}

. (11b)

These equations allow computing a lens designed with minimal third-order aberrations, with conic constants calculated from the
eidel equations.

The third-order conic constants were calculated to minimize spherical aberrations and coma. Still, if the lenses have 𝑓 -number
< 5, and the field angle is large, the optical designs equations computed render non-tolerable aberrations. When the focal ratio is
less than 5, the third-order aberrations are considerable and inadequate to consider a final optical design with this methodology.
Traditionally, it is possible to design optical systems by making computations through successive approximations of third, fifth, and
seventh order for the wavefront aberration coefficients. We prefer to make corrections using the exact ray trace to reduce spherical
and coma aberrations at the center and the aperture edge of the lens.

The following section explains a method to correct spherical and coma aberrations for thick lenses designed using exact ray
tracing, which improves the computations of the third-order.

3. Reduction of spherical aberration and coma of a singlet, far object 𝒅𝟎 = ∞, exact ray tracing case

In this section of the article, to reduce spherical aberration, the condition used that both the paraxial optical path 1 and the
length of the marginal optical path 2 should be the same [4]. Knowing the initial coordinates (𝑥1, 𝑦1, 𝑧1) and the director cosines
f the incident ray �̂�1 = (𝐿0,𝑀0, 𝑁0) on the first surface of the lens (see Fig. 1), we can know the direction of the refracted ray by
he first surface �̂�2 = (𝐿1,𝑀1, 𝑁1) using the method of transfer between conic surfaces [15].

Castro et al. [4] found the coordinates of the point 𝑃2(𝑥2, 𝑦2, 𝑧2) to determine the conic constant of the second surface using the
eneral equation:

𝑘𝑖 =
2𝑧𝑖 − 𝑐𝑖(𝑦2𝑖 + 𝑧2𝑖 )

𝑐𝑖𝑧2𝑖
𝑖 = 1, 2, (12)

where the coordinates 𝑦2 and 𝑧2 are given by

𝑦2 = 𝑦1 +𝑀1𝐷1, (13a)

𝑧2 = 𝑧1 − 𝑑1 +𝑁1𝐷1 (13b)

which are functions that depend on the parameter 𝐷1 represented in Fig. 1, 𝑀1 and 𝑁1 are the director cosines of the refracted ray
on the first surface, and 𝐷1 shall obtain by solving the quadratic equation:

′2 2 ′ ′
4

(1 − 𝑛 )𝐷1 + 2[𝑦1𝑀1 − (𝑑2 − 𝑧1 + 𝑑1)𝑁1 + (𝑛 𝑑1 + 𝑑2 − 𝑧1)𝑛 ]𝐷1
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+ [𝑦21 + (𝑑2 − 𝑧1 + 𝑑1)2 − (𝑛′𝑑1 + 𝑑2 − 𝑧1)2] = 0. (14)

Castro et al. [4] derived the above equation. Whether both the discriminant ≥ 0 and the quadratic equation satisfies Eq. (5), we
obtain the real solution to the Eq. (14). Hence, the correct answer must be the one with a positive sign. We find the conic constant’s
value that corrects exact spherical aberration for a thick lens with this solution.

One goal of this paper is to design aplanatic lenses, hence, coma aberration must be eliminated simultaneously with the spherical
one; therefore, Section 3.1 presents the development to find the exact equations that correct coma aberration.

3.1. Equations to correct coma aberration

As Kingslake remarked [2], if 𝑓𝑝 is the distance from the second principal plane to the focal point measured along any paraxial
ray, and if 𝐹𝑚 is the focal distance to any marginal ray such that:

𝐹𝑚 =
𝑦1

sin𝑈3
, (15)

then to get a thick lens free of coma aberration, the Abbe Sine condition must be satisfied, which means that 𝐹𝑚 = 𝑓𝑝 and

𝑓𝑝 =
𝑦1

sin𝑈3
. (16)

From Fig. 1, we get

sin𝑈2 = −
𝑦2
𝐷2

. (17)

Substituting Eq. (17) into (16), we find that:

𝑓𝑝 = −
𝑦1
𝑦2

𝐷2. (18)

Substituting the distance 𝐷2 =
√

𝑦22 + (𝑑2 − 𝑧2)2 computed along the marginal ray into Eq. (18):

−
𝑦2𝑓
𝑦1

=
√

𝑦22 + (𝑑2 − 𝑧2)2. (19)

This equation is squared and substituting into it the coordinates of the point 𝑃2(𝑦2 and 𝑧2) given by the Eq. (13a) and Eq. (13b),
to get :

(𝑦1 +𝑀1𝐷1)2(𝑓 2 − 𝑦21) = 𝑦21(𝑑2 − (𝑧1 − 𝑑1 +𝑁1𝐷1))2. (20)

By expanding and making algebra in Eq. (20), a second-degree equation obtains in variable 𝐷1, given by:
(

𝑀2
1𝑓

2
𝑝 − 𝑦21

)

𝐷2
1 + 2𝑦1

[

𝑀1

(

𝑓 2
𝑝 − 𝑦21

)

+ 𝑦1
(

𝑑2 + 𝑑1 − 𝑧1
)

𝑁1

]

𝐷1

+ 𝑦21
[

𝑓 2
𝑝 − 𝑦21 − (𝑑2 + 𝑑1 − 𝑧1)2

]

= 0. (21)

Now substituting Eq. (21) into (14), we obtain a fourth-degree equation in variable 𝑧1, given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2[𝑦1𝑀1−(𝑑2−𝑧1+𝑑1)𝑁1+(𝑛′𝑑1+𝑑2−𝑧1)𝑛′]
2(1−𝑛′2)

+

1
(2(1−𝑛′2))

[

2
[

𝑦1𝑀1 − (𝑑2 + 𝑑1 − 𝑧1)𝑁1 + (𝑛′𝑑1 + 𝑑2 − 𝑧1)𝑛′
]2 −

4(1 − 𝑛′2)
[

𝑦21 + (𝑑2 + 𝑑1 − 𝑧1)2 − (𝑛′𝑑1 + 𝑑2 − 𝑧1)2
]

]1∕2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

2

+

2𝑦1
[

(𝑓 2 − 𝑦21)𝑀1 + 𝑦1(𝑑2 − 𝑧1 + 𝑑1)𝑁1
]

⋅

⋅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2[𝑦1𝑀1−(𝑑2−𝑧1+𝑑1)𝑁1+(𝑛′𝑑1+𝑑2−𝑧1)𝑛′]
2(1−𝑛′2)

+

1
(2(1−𝑛′2))

[

2
[

𝑦1𝑀1 − (𝑑2 + 𝑑1 − 𝑧1)𝑁1 + (𝑛′𝑑1 + 𝑑2 − 𝑧1)𝑛′
]2 −

4(1 − 𝑛′2)
[

𝑦21 + (𝑑2 + 𝑑1 − 𝑧1)2 − (𝑛′𝑑1 + 𝑑2 − 𝑧1)2
]

]1∕2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

𝑦21
[

𝑓 2 − 𝑦21 − (𝑑2 − 𝑧1 + 𝑑1)2
]

= 0. (22)

The director cosines 𝐿1, 𝑁1 and 𝑀1 depend on 𝑧1; hence the Eq. (22) ensures that we have a system free of spherical and coma
berration; it is an exact equation that makes no approximations during its derivation. For practical purposes, the Eq. (22) can be
olved numerically using a root search method, e.g., the Newton–Raphson method for a non-linear equations system.

Four solutions for 𝑧1 are obtained that satisfy the Eq. (22), but the only one that allows the correct solution of the conic surface
epends on the following considerations: If the curvature radius 𝑐1 is positive, then 𝑧1 > 0. If 𝑐1 is negative, then 𝑧1 < 0. Hence the
oordinate (𝑦1, 𝑧1) must locate on the periphery of a conic section near the vertex-object of the initial spherical surface (see Fig. 2).
5
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Fig. 2. Representation of the selected, correct solution for 𝑧1. The gray rectangle represents the region of solutions 𝑧1 that satisfies our aplanatic system’s
conditions without inverting the surfaces’ curvature.

Once the correct solution for 𝑧1 is selected, the Eq. (22) is substituted into Eqs. (12) and (21) to obtain the value of the conic
constant of the first surface 𝑘1 and parameter 𝐷1, respectively. With 𝐷1, the coordinate (𝑦2; 𝑧2) is determined to be substituted into
Eq. (12) for finding the conic constant of the second surface (𝑘2). With that, we guarantee thick lens aberrations are corrected both at
the focal point and at one height of the optical axis of the incident ray. The above description is sufficient to design diffraction-limited
lenses with exact ray tracing for an object at infinity.

An object at infinity is not the only position used in optical instruments; for example, a close object to the lens uses in the
microscope’s design. The following section shows how to design a thick lens for near objects to the optical system.

4. Singlet lens with reduction of spherical and coma aberrations, near object, accurate ray trace case

Following the methodology developed in the previous section, the object’s finite position equations are calculated to obtain a
diffraction limit lens.

In this case, it is necessary to know the first-order parameters obtained, as mentioned in Section 2. Besides, the refractive index
𝑛′, the magnification 𝑚, the object position 𝑑0, and the 𝑓 -number, parameters provided in Section 2 (see Fig. 1). Additionally, the
paraxial and marginal rays’ optical paths must be equal to obtain a singlet lens free of spherical aberration [4].

(1 − 𝑛′2)𝐷2
1 + 2[(𝑑0 + 𝑛′𝑑1 + 𝑑2 −𝐷0)𝑛′ + 𝑦1𝑀1 − (𝑑2 + 𝑑1 − 𝑧1)𝑁1]𝐷1

+ [𝑦21 + (𝑑2 + 𝑑1 − 𝑧1)2 − (𝑑0 + 𝑛′𝑑1 + 𝑑2 −𝐷0)2] = 0. (23)

Castro et al. [4] details the development of Eq. (23) to correct spherical aberration.

4.1. Correction of coma aberration

Abbe [20–23] established a ratio for coma aberration as a difference in heights from one image to another on each surface of
an optical system. Furthermore, he deduced that a spherical aberration-corrected optical system could be free of coma aberration
if the paraxial magnification 𝑚 and the marginal magnification 𝑀 are equal. Hence:

𝑚 = 𝑀 =
sin𝑈1
sin𝑈3

. (24)

From Fig. 1, it is easy to obtain something like:

sin𝑈1 =
𝑦1
𝐷0

, (25a)

sin𝑈3 = −
𝑦2
𝐷2

. (25b)

Combining the Eqs. (25a), (25b), the distance along the marginal ray 𝐷2, coordinates 𝑧2 and 𝑦2, and after performing some
algebraic operations, it is possible to obtain a second-degree equation for 𝐷1.

(𝑚2𝐷2𝑀2 − 𝑦2)𝐷2 + 2𝑦
[

(𝑚2𝐷2 − 𝑦2)𝑀 + (𝑑 + 𝑑 − 𝑧 )𝑁 𝑦
]

𝐷

6
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Table 1
Optical parameters of a lens with a focal length equal to 60 mm and 𝑓∕2.5.

Radius Thickness Index Glass Semi Diameter Conic
[mm] [mm] [mm]

Obj. ∞ ∞ 1 ∞ 0
Surf.1 33.7805 3.7013 1.5168 12 −0.5318
Surf.2 −363.6379 57.7605 1 12 −272.0541
Img. ∞ 0 1 0 0

+ 𝑦21
[

𝑚2𝐷2
0 − 𝑦21 − (𝑑2 + 𝑑1 − 𝑧1)2

]

= 0. (26)

Eq. (26) gives us a condition to obtain an optical system free of coma aberration while the optical system is free of spherical
aberration.

Substituting Eq. (23) into (26), a fourth-degree equation is obtained for 𝑧1:

(𝑚2𝐷2
0𝑀

2
1 − 𝑦21)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2[𝑦1𝑀1−(𝑑2−𝑧1+𝑑1)𝑁1+(𝑛′𝑑1+𝑑2−𝑑0−𝐷0)𝑛′]
2(1−𝑛′2)

+

1
(2(1−𝑛′2))

[

2
[

𝑦1𝑀1 − (𝑑2 + 𝑑1 − 𝑧1)𝑁1 + (𝑛′𝑑1 + 𝑑2 − 𝑑0 −𝐷0)𝑛′
]2 −

4(1 − 𝑛′2)
[

𝑦21 + (𝑑2 + 𝑑1 − 𝑧1)2 − (𝑛′𝑑1 + 𝑑2 − 𝑑0 −𝐷0)2
]

]1∕2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

2𝑦1
[

(𝑚2𝐷0 − 𝑦21)𝑀1 + 𝑦1(𝑑2 − 𝑧1 + 𝑑1)𝑁1
]

⋅

⋅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2[𝑦1𝑀1−(𝑑2−𝑧1+𝑑1)𝑁1+(𝑛′𝑑1+𝑑2−𝑑0−𝐷0)𝑛′]
2(1−𝑛′2)

+

1
(2(1−𝑛′2))

[

2
[

𝑦1𝑀1 − (𝑑2 + 𝑑1 − 𝑧1)𝑁1 + (𝑛′𝑑1 + 𝑑2 − 𝑑0 −𝐷0)𝑛′
]2 −

4(1 − 𝑛′2)
[

𝑦21 + (𝑑2 + 𝑑1 − 𝑧1)2 − (𝑛′𝑑1 + 𝑑2 − 𝑑0 −𝐷0)2
]

]1∕2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

𝑦21
[

𝑚2𝐷2
0 − 𝑦21 − (𝑑2 − 𝑧1 + 𝑑1)2

]

= 0. (27)

With the methodology developed in Section 3 and with Eq. (27) deduced in this section, it is possible to calculate the conic
onstants, which allow the design of a thick singlet free of spherical and coma aberration for a near object at the diffraction limit.
hus, are corrected two incident rays, one the marginal and the other on the optical axis.

. Examples

The developed method is essential for optical engineering because it solves the problem of finding the optimal optical design
f a thick lens at the diffraction limit, which is very useful for several applications, as mentioned in the introduction. Equations
btained are implemented with a homemade algorithm executed in Matlab® R2020a for shape factors ranging from −0.5 to 0.9.
he proposal validates with examples of thick lens designs. This algorithm is practical to design singlet both third-order and for
xact order. Equations solve numerically, depending on either a wide lens with a far or near object is considered and with one or
wo conic surfaces.

One of the goals of designing an optical system is to optimize the design until the diffraction limit; the developed method has
hat capacity. As an example of this, two optical systems show next.

A first example shows one lens’s design to reduce the most remarkable aberrations, with a focal length of 60 mm, the 𝑓 -number
of 2.5, a shape factor of 0.83, and two conic constants use to correct spherical and coma aberrations. Commercial glass BK7 from
the Schott AG®catalog proposes for the visible region. The diameter of the lens is 𝐷 = 𝑓∕𝑓 -number= 24 mm. Using Eq. (3) we first
etermine the radii of curvature for a thin lens 𝑟1 = 33.8878 mm and 𝑟2 = −364.7929 mm, which we calculate the sagittas 𝑧1 = 2.1957
m and 𝑧2 = −0.1974 mm using the Eq. (5), considering that initially the lens is made up of spherical surfaces (𝑘1 = 𝑘2 = 0) and

that the height 𝑦1 = 𝑦2 = 𝐷∕2 = 12 mm. In an iterative process, the initial sagitta values and a lens edge thickness 𝑒 = 1.30 mm in
conjunction with the Eqs. (4), (5), and (7) allow to maintain the focal length [4], and an axial thickness is calculated 𝑑1 = 3.7013
mm and radii of curvature for a thick lens 𝑟1 = 33.7805 mm and 𝑟2 = −363.6379 mm. The position of the image is equal to
𝑑2 = 𝑓 +𝐻2 = 57.7605 mm, where 𝐻2 = −2.2399 mm is the position of the principal plane of the second surface [24].

In Table 1 are displayed the first-order parameters. We compute the four possible values of the sagitta 𝑧1 to satisfy Eq. (22),
from which it chose an estimation for 𝑧1 = 2.1638 mm following the consideration for the curvature radius shown in Fig. 2, where
the values of the new sagittas should not implicate a change in the curvature or the thickness of the lens. This value of 𝑧1 allows
calculating the director cosines of the refracted ray by the first surface 𝐿1 = 0, 𝑀1 = −0.1220, and 𝑁1 = 0.9925 by using the transfer
between conic surfaces, which are replaced in Eq. (21) to determine 𝐷1 = 1.3672 mm which is used to calculate the coordinates
𝑦2 = 11.8331 mm and 𝑧2 = −0.1804 mm using the Eqs. (13a) and (13b) respectively. Finally, we calculate the conic constants for
the first and second surfaces using Eq. (12), and these are equal to −0.5318 and −272.0541, respectively.

With these values, was possible to minimize spherical and coma aberrations for a thick lens. Using the optical design software
®
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ZEMAX , we validate our equations developed in Sections 3 and 4 to design an optical system free of spherical aberration and coma
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Fig. 3. Design case of an infinite conjugate singlet.

Table 2
Optical parameters of a lens with magnification equal to −3 and 𝑓∕2.5.

Radius Thickness Index Glass Semi Diameter Conic
[mm] [mm] [mm]

Obj. ∞ 56.3551 1 0 0
Surf.1 73.1455 7.8122 1.5168 9 −8.2255
Surf.2 −32.8624 178.3624 1 9 −1.0012
Img. ∞ 0 1 0 0

aberration, the graphs in Figs. 3 and 4 warrantees that we have a diffraction-limited design. The use of this software allows us to
show the goodness of this work’s results. The first simulated example in ZEMAX® Fig. 3(a) shows a sketch of the designed lens. As
can be seen, each incident ray converges to the same point. Fig. 3(b) shows the wavefront with a peak-to-valley value of 0.1596𝜆
and the RMS wavefront error of 0.0529𝜆, 𝜆 = 588 nm. Fig. 3(c) shows that the lens exhibits residual spherical aberrations in the
spot diagrams and does not show coma aberration; it shows an astigmatism spot diagram. Fig. 3(d) shows the PSF (Point Spread
Function), which reveals a Strehl ratio of 0.8968, confirming a diffraction-limited design.

The second example is one thick lens design with magnification 𝑚 = −3, 𝑓 -number equal to 2.5, object distance 𝑙 = −60 mm,
the shape factor of −0.38, and commercial glass BK7. The image distance is 𝑙′ = 𝑚𝑙 = 180 mm, focal length 𝑓 = 𝑙𝑙′∕(𝑙 − 𝑙′) = 45
mm and lens diameter 𝐷 = 𝑓∕𝑓 -number= 18 mm. Following the methodology developed in the first example, we have the radii
of curvature for a thin lens 𝑟1 = 75.0179 mm and 𝑟2 = −33.7036 mm, with the heights 𝑦1 = 𝑦2 = 𝐷∕2 = 9 mm, we compute the
sagittas for spherical surfaces 𝑧1 = 0.5558 mm and 𝑧2 = −1.2564 mm, respectively. Considering a lens edge thickness 𝑒 = 6 mm,
we have an axial thickness 𝑑1 = 7.8122 mm and radii of curvatures 𝑟1 = 73.1455 mm and 𝑟2 = −32.8624 mm for a thick lens.
The object and image positions concerning the vertices of the first and second surfaces are equal to 𝑑 = 𝑙 + 𝐻 = −56.3551 mm
8

0 1



Optik 251 (2022) 168139F. Narea-Jiménez et al.
Fig. 4. Design case of a finite conjugate singlet.

and 𝑑2 = 𝑙′ + 𝐻2 = 178.3624 mm, where 𝐻1 = 3.6448 mm and 𝐻2 = −1.6375 mm are the positions of the principal planes [24].
All first-order parameters calculate and show in Table 2. We choose the best solution for 𝑧1 = 0.5392 mm that satisfies Eq. (27),
and allow us to calculate director cosines of the refracted ray 𝐿1 = 0, 𝑀1 = 0.0624, and 𝑁1 = 0.9980 between the conic surfaces,
which are substituted in Eq. (26) to determine 𝐷1 = 5.9027 mm this value uses to calculate the coordinates 𝑦2 = 9.3717 mm and
𝑧2 = −1.3362 mm. The first and second conic constants calculate by using the Eq. (12). These are equal to −8.2255 and −1.0012,
respectively.

We obtain an aplanatic singlet with these values, as shown in Fig. 4(a), which illustrates the designed lens outline. Fig. 4(b)
shows the wavefront with a peak-to-valley value of 0.0952𝜆 and the RMS wavefront error of 0.0272𝜆. Fig. 4(c) shows residual
spherical aberrations and astigmatism in the spot diagram. Fig. 4(d) shows the PSF, which shows a Strehl ratio of 0.9713. In the
spot diagram of both examples, it is evident that the coma aberration is wholly corrected, unlike the results presented by Mikš [12],
where this aberration is still apparent.

In both examples, we corroborate that Maréchal’s criterion is satisfied in such a way that the method that we developed when
performing this exact calculation using the equality of the optical path and the condition of Abbe’s sine minimizes the RMS wavefront
error [15,25]. Examples show wavefront correction at the center and on the edge of the lens, as we can see in 3(b) and 4(b). As
shown 3(c) and 4(c) in the two examples for the field’s margin, the spot diagram is like an ellipse showing astigmatism aberration.

We design other examples in different spectral regions with the developed method, such as the ultraviolet and infrared regions,
which show our methodology’s adequate functionality.

Conclusion

We calculate equations to obtain lenses free of spherical and coma aberration using third-order design and exact ray tracing,
depending on the shape factor and the lenses’ conic constants. Our third-order results are in agreement with the calculations made
9
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by Kingslake and Shannon, among others. By making an exact ray tracing, we have eliminated the spherical and coma aberrations
at the center and edge of the aperture, allow us to obtain a diffraction-limited system. We analyze cases, both for when the object
is near or far from the lens. Our exact methodology is an alternative method of designing lenses that avoids using on-the-market
optimization software.

It shows that the spot diagrams obtained are close to the diffraction limit. These results can be compared with any commercial
ptical design software when the conic constants are optimized, finding similar results. The examples presented exhibit the developed
ethod’s efficiency, particularly for 𝑓 -number equal to or greater than 2.5 and minor fields of view, which agrees with Abbe, who

proposed that aplanatism occurs near the center of the field. Strehl ratios are around 0.8 and RMS wavefront error ≤ 𝜆∕14 obtain
for any designed lens with the presented method, which shows that the coma and spherical aberration-corrected at any height of
the incident marginal ray. The final optical design obtained with this method is ready to apply optical tolerance analysis.
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